【題目】如圖,⊙O的直徑AB=12cm,C為AB延長線上一點,CP與⊙O相切于點P,過點B作弦BD∥CP,連接PD.
(1)求證:點P為
的中點;
(2)若∠C=∠D,求四邊形BCPD的面積.
![]()
【答案】(1)證明見解析;(2)
.
【解析】試題分析:(1)連接OP,根據(jù)切線的性質(zhì)得到PC⊥OP,根據(jù)平行線的性質(zhì)得到BD⊥OP,根據(jù)垂徑定理即可得到結(jié)論;
(2)根據(jù)圓周角定理得到∠POB=2∠D,根據(jù)三角形的內(nèi)角和得到∠C=30°,推出四邊形BCPD是平行四邊形,于是得到結(jié)論.
試題解析:(1)連接OP,
∵CP與⊙O相切于點P,
∴PC⊥OP,
∵BD∥CP,
∴BD⊥OP,
∴
,
∴點P為
的中點;
(2)∵∠C=∠D,
∵∠POB=2∠D,
∴∠POB=2∠C,
∵∠CPO=90°,
∴∠C=30°,
∵BD∥CP,
∴∠C=∠DBA,
∴∠D=∠DBA,
∴BC∥PD,
∴四邊形BCPD是平行四邊形,
∵PO=
AB=6,
∴PC=6
,
∵∠ABD=∠C=30°,
∴OE=
OB=3,
∴PE=3,
∴四邊形BCPD的面積=PCPE=6
×3=18
.
![]()
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是邊長為1的正方形ABCD對角線AC上一動點(P與A、C不重合),點E在線段BC上,且PE=PB.
(1)求證:①PE=PD;②PE⊥PD;
(2)設AP=x,△PBE的面積為y.
①求出y關于x的函數(shù)關系式,并寫出x的取值范圍;
②當x取何值時,y取得最大值,并求出這個最大值.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,a,b,c分別是ΔABC中∠A,∠B,∠C的對邊,P為BC上一點,以AP為直徑的圓O交AB于D,PE∥AB交AC于E,b,c是方程x2+kx+9=0的兩根,且(b2+c2)(b2+c2-14)-72=0,銳角B的正弦值等于
。
(1)求K的值;
(2)設BD=x,求四邊形ADPE的面積為S關于x的函數(shù)關系式;
(3)問圓O是否能與BC相切?若能請求出x的值;若不能,請說明理由。
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了讓學生了解環(huán)保知識,增強環(huán)保意識,紅星中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
(1)填充頻率分布表中的空格;
(2)補全頻率分布直方圖;
(3)在該問題中的樣本容量是多少?
答: 。
(4)全體參賽學生中,競賽成績落在哪組范圍內(nèi)的人數(shù)最多?(不要求說明理由)”
答: 。
(5)若成績在90分以上(不含90分)為優(yōu)秀,則該校成績優(yōu)秀的約為多少人?
答: 。
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間y1(單位:分鐘)是關于x的一次函數(shù),其關系如下表:
地鐵站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
y1(分鐘) | 18 | 20 | 22 | 25 | 28 |
(1)求y1關于x的函數(shù)表達式;
(2)李華騎單車的時間y2(單位:分鐘)也受x的影響,其關系可以用y2=
x2-11x+78來描述,請問:李華應選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗表明,人體內(nèi)某種細胞的形狀可近似地看作球體,它的直徑約為0.00000156m,數(shù)字0.00000156用科學記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蓄水池的橫斷面示意圖如圖所示,分深水區(qū)和淺水區(qū),如果這個注滿水的蓄水池以固定的流量把水全部放出,下面的圖象能大致表示水的深度h和放水時間t之間的關系的是( 。![]()
A.
B.
C.
D.![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com