如圖,已知拋物線
與
軸交于A、B兩點(diǎn),與
軸交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo).
(2)過點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積.
(3)在
軸上方的拋物線上是否存在一點(diǎn)M,過M作MG![]()
軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與
PCA相似.若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);否則,請(qǐng)說明理由.
![]()
解:(1)令
,得
解得![]()
令
,得![]()
∴ A
B
C
(2)∵OA=OB=OC=
∴
BAC=
ACO=
BCO=![]()
∵AP∥CB, ∴
PAB=![]()
過點(diǎn)P作PE![]()
軸于E,則
APE為等腰直角三角形
令OE=
,則PE=
∴P![]()
∵點(diǎn)P在拋物線
上 ∴
解得
,
(不合題意,舍去)
∴PE=![]()
∴四邊形ACBP的面積
=
AB•OC+
AB•PE
=![]()
(3). 假設(shè)存在
∵
PAB=
BAC =
∴PA
AC
∵M(jìn)G![]()
軸于點(diǎn)G,
∴
MGA=
PAC =![]()
在Rt△AOC中,OA=OC=
∴AC=![]()
在Rt△PAE中,AE=PE=
∴AP=
設(shè)M點(diǎn)的橫坐標(biāo)為
,則M ![]()
①點(diǎn)M在
軸左側(cè)時(shí),則![]()
(ⅰ) 當(dāng)
AMG ![]()
PCA時(shí),有
=![]()
∵AG=
,MG=![]()
即
![]()
解得
(舍去)
(舍去)
(ⅱ) 當(dāng)
MA
G ![]()
PCA時(shí)有
=![]()
即 ![]()
解得:![]()
(舍去) ![]()
∴M
② 點(diǎn)M在
軸右側(cè)時(shí),則
(ⅰ) 當(dāng)
AMG ![]()
PC
A時(shí)有
=![]()
∵AG=
,MG=
∴
解得
(舍去)
∴M
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O是△ABC的外接圓,∠OCB=30°,則∠A的度數(shù)等于( )
A.60° B.50° C.40° D.30°
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
圖①、圖②都是4×4的正方形網(wǎng)格,小正方形的邊長均為1,每個(gè)小正方形的
頂點(diǎn)稱為格點(diǎn).在①、②兩個(gè)網(wǎng)格中分別標(biāo)注了5個(gè)格點(diǎn),按下列要求畫圖:
(1)在圖①中以格點(diǎn)為頂點(diǎn),畫一個(gè)等腰三角形,使其內(nèi)部含有已標(biāo)注的3個(gè)格點(diǎn);
(2)在圖②中以格點(diǎn)為頂點(diǎn),畫一個(gè)正方形,使其邊長為無理數(shù),并使其內(nèi)部含有已
標(biāo)注的3個(gè)格點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖6,點(diǎn)A、B、C在
上,且∠COB=53°,CD⊥OB,垂足為D,當(dāng)
時(shí),求∠OBA的度數(shù)。
![]()
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com