【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=40°,則∠CDE的度數(shù)為( 。
![]()
A.50°B.40°C.60°D.80°
【答案】C
【解析】
根據(jù)等腰三角形的性質(zhì)推出∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,根據(jù)三角形的外角性質(zhì)求出∠B=20°,由三角形的內(nèi)角和定理求出∠BDE,根據(jù)平角的定義即可求出選項.
∵AC=CD=BD=BE,∠A=40°,
∴∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,
∵∠B+∠DCB=∠CDA=40°,
∴∠B=20°,
∵∠B+∠EDB+∠DEB=180°,
∴∠BDE=∠BED=
(180°﹣20°)=80°,
∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣40°﹣80°=60°,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:弦切角:頂點在圓上,一邊與圓相交,另一邊和圓相切的角叫弦切角.
問題情景:已知如圖所示,直線
是
的切線,切點為
,
為
的一條弦,
為弧
所對的圓周角.
![]()
(1)猜想:弦切角
與
之間的關(guān)系.試用轉(zhuǎn)化的思想:即連接
并延長交
于點
,連接
,來論證你的猜想.
(2)用自己的語言敘述你猜想得到的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知點D在線段AB的反向延長線上,過AC的中點F作線段GE交∠DAC的平分線于E,交BC于G,且AE∥BC.
(1)求證:△ABC是等腰三角形;
(2)若AE=8,AB=10,GC=2BG,求△ABC的周長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:線段AB,BC.
求作:平行四邊形ABCD.
以下是甲、乙兩同學(xué)的作業(yè).
甲:
①以點C為圓心,AB長為半徑作;
②以點A為圓心,BC長為半徑作;
③兩弧在BC上方交于點D,連接AD,CD.
四邊形ABCD即為所求平行四邊形.(如圖1)
乙:
①連接AC,作線段AC的垂直平分線,交AC于點M;
②連接BM并延長,在延長線上取一點D,使MD=MB,連接AD,CD.
四邊形ABCD即為所求平行四邊形.(如圖2)
![]()
老師說甲、乙同學(xué)的作圖都正確,你更喜歡______的作法,他的作圖依據(jù)是:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題.
小峰一邊哼著歌“我是一條魚,快樂的游來游去”,一邊試著在平面直角坐標系中畫出了一條魚.如圖,O(0,0),A(5,4),B(3,0),C(5,1),D(5,-1),E(4,-2).
(1)作“小魚”關(guān)于原點O的對稱圖形,其中點O,A,B,C,D,E的對應(yīng)點分別為O1,A1,B1,C1,D1,E1(不要求寫作法);
(2)寫出點A1,E1的坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
中,
,現(xiàn)有兩點
、
分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為1cm/s,點N的速度為2 cm/s.當點N第一次到達B點時,
、
同時停止運動.
(1)點
、
運動幾秒時,
、
兩點重合?
(2)點
、
運動幾秒時,可得到等邊三角形
?
(3)當點
、
在BC邊上運動時,能否得到以MN為底邊的等腰三角形AMN?如存在,請求出此時
、
運動的時間.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標系中,
,
,
,
軸于點
.
(1)
;
(2)連接
,判斷
的形狀,并說明理由;
(3)如圖2,已知
,
,若
是等腰直角三角形,且
,則點
坐標為 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:①等腰三角形底邊的中點到兩腰的距離相等;②等腰三角形的高、中線、角平分線互相重合; ③若
與
成軸對稱,則
一定與
全等;④有一個角是
度的三角形是等邊三角形;⑤等腰三角形的對稱軸是頂角的平分線.正確命題的個數(shù)是( )
A.
B.
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com