【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,AD與BC相交于點E.連接BD,作∠BDF=∠BAD,DF與AB的延長線相交于點F.
(1)求證:DF是⊙O的切線;
(2)若DF∥BC,求證:AD平分∠BAC;
(3)在(2)的條件下,若AB=10,BD=6,求CE的長.
![]()
【答案】(1)證明見解析;(2)證明見解析;(3)
.
【解析】
(1)如圖,連結(jié)OD,只需推知OD⊥DF即可證得結(jié)論;
(2)根據(jù)平行線的性質(zhì)得到∠FDB=∠CBD,由圓周角的性質(zhì)可得∠CAD=∠BAD=∠CBD=∠BDF,即AD平分∠BAC;
(3)由勾股定理可求AD的長,通過△BDE∽△ADB,可得
,可求DE=
,AE=
,由銳角三角函數(shù)可求CE的長.
(1)連接OD,CD,
![]()
∵AB是直徑,
∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∵OA=OD,
∴∠BAD=∠ADO,
∵∠BDF=∠BAD,
∴∠BDF+∠ODB=90°,
∴∠ODF=90°,
∴OD⊥DF,
∴DF是⊙O的切線;
(2)∵DF∥BC,
∴∠FDB=∠CBD,
∵
,
∴∠CAD=∠CBD,且∠BDF=∠BAD,
∴∠CAD=∠BAD=∠CBD=∠BDF,
∴AD平分∠BAC;
(3)∵AB=10,BD=6,
∴AD=
,
∵∠CBD=∠BAD,∠ADB=∠BDE=90°,
∴△BDE∽△ADB,
∴
,
∴
,
∴DE=
,
∴AE=AD﹣DE=
,
∵∠CAD=∠BAD,
∴sin∠CAD=sin∠BAD
∴![]()
∴
∴CE=![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校為了解本校學(xué)生出行使用共享單車的情況,隨機調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計表.
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 11 | 15 | 23 | 28 | 18 | 5 |
(1)這天部分出行學(xué)生使用共享單車次數(shù)的中位數(shù)是 ,眾數(shù)是 .
(2)這天部分出行學(xué)生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))
(3)若該校某天有1500名學(xué)生出行,請你估計這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線
與
軸交于
兩點(點
在點
的右側(cè)),與
軸交于點
,連接
.
![]()
(1)求點
三點的坐標(biāo)和拋物線的對稱軸;
(2)點
為拋物線對稱軸上一點,連接
,
,若
,求點
的坐標(biāo);
(3)已知點
,若
是拋物線上一個動點(其中
),連接
,
,
,求
面積的最大值及此時點
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB上一點,若以P、A、D為頂點的三角形與△PBC相似,則PA=_____cm.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、上網(wǎng)等四個方面調(diào)查了若干學(xué)生的興趣愛好;并將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
![]()
(1)在這次研究中,一共調(diào)查了______名學(xué)生;若該校共有1500名學(xué)生,估計全校愛好運動的學(xué)生共有______名;
(2)補全條形統(tǒng)計圖,并計算閱讀部分圓心角是______度;
(3)若該校九年級愛好閱讀的學(xué)生有150人,估計九年級有多少學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司快遞員甲勻速騎車前往某小區(qū)送物件,出發(fā)幾分鐘后,快遞員乙發(fā)現(xiàn)甲的手機落在公司,無法聯(lián)系,于是乙勻速騎車去追趕甲.乙剛出發(fā)2分鐘時,甲也發(fā)現(xiàn)自己手機落在公司,立刻按原路原速騎車回公司,2分鐘后甲遇到乙,乙把手機給甲后立即原路原速返回公司,甲繼續(xù)原路原速趕往某小區(qū)送物件,甲乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示(乙給甲手機的時間忽略不計).則乙回到公司時,甲距公司的路程是______米.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)
與反比例函數(shù)
的圖象交于A,B兩點.
![]()
(1)求
的面積;
(2)觀察圖象,可知一次函數(shù)值小于反比例函數(shù)值的x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=
在第一象限圖象上一點,連接OA,過點A作AB∥x軸(點B在點A右側(cè)),連接OB,若OB平分∠AOX,且點B的坐標(biāo)是(8,4),則k的值是( )
![]()
A.6B.8C.12D.16
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com