【題目】如圖,一張矩形紙片ABCD,AD=9 cm,AB=12 cm,將紙片折疊使A,C兩點(diǎn)重合,那么折痕MN=________cm.
![]()
【答案】![]()
【解析】
如下圖,連接AC交MN于點(diǎn)O,連接CM,由已知易得AC=15,由折疊的性質(zhì)易得AM=CM,AO=CO=
,∠AOM=∠CON=90°,這樣設(shè)AM=x,在Rt△BCM中建立關(guān)于x的方程即可求得CM=
,進(jìn)而在Rt△CMO中可求得OM=
,再證△AMO≌△CNO即可得到ON=OM,由此即可得到MN=
.
如下圖,連接AC交MN于點(diǎn)O,連接CM,
∵在矩形ABCD中,BC=AD=9cm,AB=12cm,
∴AC=
,
∵將矩形沿MN折疊后,點(diǎn)C與點(diǎn)A重合,
∴AM=CM,AO=CO=
,∠AOM=∠CON=90°,
設(shè)AM=x,則CM=x,BM=12-x,
∵在Rt△CBM中,∠B=90°,BC=9cm,
∴
,解得:
,即CM=AM=
,
∴在Rt△CMO中,OM=
,
∵在矩形ABCD中,CD∥AB,
∴∠MAO=∠NCO,
又∵AO=CO,∠AOM=∠CON,
∴△AMO≌△CNO,
∴ON=OM,
∴MN=2OM=
.
故答案為:
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是由幾個(gè)小立方塊所搭幾何體的俯視圈,小立方塊中的數(shù)字表示在該位置小立方塊的個(gè)數(shù).
![]()
(1)請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫出從正面和從左面看到的這個(gè)幾何體的形狀圖.
(2)如圖,是小明用9個(gè)棱長(zhǎng)為1
的小立方塊積木搭成的幾何體的俯視圖,小立方塊中的數(shù)字表示在該位置小立方塊的個(gè)數(shù),他請(qǐng)小亮用盡可能少的同樣大小的立方塊在旁邊再搭建一個(gè)幾何體,使小亮所搭建的幾何體恰好可以和小明所搭建的幾何體拼成一個(gè)大的正方體(即拼大正方體時(shí)將其中一個(gè)幾何體翻轉(zhuǎn),且假定組成每個(gè)幾何體的立方塊粘合在一起),則:
①小亮至少還需要 個(gè)小正方體;
②上面①中小亮所搭幾何體的表面積為
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)當(dāng)
時(shí),求
的值,(寫出解答過(guò)程)
(2)若
,且
,
的值為 .
(3)若
,則
的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)校園周邊治安綜合治理,警察巡邏車在學(xué)校旁邊的一條東西方向的公路上執(zhí)行治安巡邏,如果規(guī)定向東為正,向西為負(fù),從出發(fā)點(diǎn)開(kāi)始所走的路程(單位:千米)為:![]()
(1)此時(shí),這輛巡邏車司機(jī)如何向警務(wù)處描述他現(xiàn)在的位置?
(2)已知每千米耗油
升,如果警務(wù)處命令其巡邏車馬上返回出發(fā)點(diǎn),這次巡邏共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(m,0),B(n,0),C(﹣1,2),且滿足式|m+2|+(m+n﹣2)2=0.
(1)求出m,n的值.
(2)①在x軸的正半軸上存在一點(diǎn)M,使△COM的面積等于△ABC的面積的一半,求出點(diǎn)M的坐標(biāo);
②在坐標(biāo)軸的其它位置是否存在點(diǎn)M,使△COM的面積等于△ABC的面積的一半仍然成立,若存在,請(qǐng)直接在所給的橫線上寫出符合條件的點(diǎn)M的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)C作CD⊥y軸交y軸于點(diǎn)D,點(diǎn)P為線段CD延長(zhǎng)線上一動(dòng)點(diǎn),連接OP,OE平分∠AOP,OF⊥OE,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),
的值是否會(huì)改變?若不變,求其值;若改變,說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒
cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm的速度向終點(diǎn)C運(yùn)動(dòng),將△PQC沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′.設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t秒,若四邊形QPCP′為菱形,則t的值為( )
![]()
A.
B. 2 C. 2
D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的弦CD與直徑AB垂直于F,點(diǎn)E在CD上,且AE=CE.
![]()
(1)求證:CA2=CE CD;
(2)已知CA=5,EC=3,求sin∠EAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AC=20 cm,BD=12 cm,兩動(dòng)點(diǎn)E,F(xiàn)同時(shí)以2 cm/s的速度分別從點(diǎn)A,C出發(fā)在線段AC上相對(duì)運(yùn)動(dòng),點(diǎn)E到點(diǎn)C,點(diǎn)F到點(diǎn)A時(shí)停止運(yùn)動(dòng).
(1)求證:當(dāng)點(diǎn)E,F(xiàn)在運(yùn)動(dòng)過(guò)程中不與點(diǎn)O重合時(shí),以點(diǎn)B,E,D,F(xiàn)為頂點(diǎn)的四邊形為平行四邊形;
(2)當(dāng)點(diǎn)E,F(xiàn)的運(yùn)動(dòng)時(shí)間t為何值時(shí),四邊形BEDF為矩形?
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com