分析 (1)把A點坐標代入y=$\frac{k}{x}$中求出k的值即可;
(2)先證明Rt△AMD∽Rt△OAC得到(n-1):2=(2-m):1,再利用點M(m,n)在y=$\frac{2}{x}$的圖象上得到n=$\frac{2}{m}$,然后解關(guān)于m的方程求出m,從而可得到M點的坐標.
解答 解:(1)把A(2,1)代入y=$\frac{k}{x}$得k=2×1=2,
所以反比例函數(shù)解析式為y=$\frac{2}{x}$;
(2)∵∠OAM=90°,
∴∠MAD+∠CAO=90°,
而∠CAO+∠AOC=90°,![]()
∴∠AOC=∠MAD,
∴Rt△AMD∽Rt△OAC,
∴AD:OC=MD:AC,即(n-1):2=(2-m):1,
∴n-1=4-2m,
∵點M(m,n)在y=$\frac{2}{x}$的圖象上,
∴n=$\frac{2}{m}$,
∴$\frac{2}{m}$-1=4-2m,
整理得2m2-5m+2=0,解得m1=$\frac{1}{2}$,m2=2(舍去),
∴n=4,
∴點M的坐標為($\frac{1}{2}$,4).
點評 本題考查了用待定系數(shù)法求反比例函數(shù)的解析式:先設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=$\frac{k}{x}$(k為常數(shù),k≠0);再把已知條件(自變量與函數(shù)的對應(yīng)值)帶入解析式,得到待定系數(shù)的方程;接著解方程,求出待定系數(shù);然后寫出解析式.解決(2)小題的關(guān)鍵是證明Rt△AMD∽Rt△OAC,利用相似比建立m與n的關(guān)系式.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com