【題目】如圖,在正方形
中,
是邊
上的動(dòng)點(diǎn)(與點(diǎn)
、
不重合),且
,
于點(diǎn)
,
與
的延長(zhǎng)線交于點(diǎn)
,連接
、
.
![]()
(1)求證:①![]()
![]()
;②
;
(2)若
,在點(diǎn)
運(yùn)動(dòng)過(guò)程中,探究:
①線段
的長(zhǎng)度是否改變?若不變,求出這個(gè)定值;若改變,請(qǐng)說(shuō)明理由;
②當(dāng)
為何值時(shí),
為等腰直角三角形.
【答案】(1)①見(jiàn)解析;②見(jiàn)解析;(2)①在點(diǎn)
運(yùn)動(dòng)過(guò)程中,
的長(zhǎng)度不變,且CG=2;②AE=
.
【解析】
(1)①由題意易得△DEF是等腰直角三角形,即得DE=DF,然后根據(jù)正方形的性質(zhì)和SAS即可證得結(jié)論;
②根據(jù)全等三角形的性質(zhì)可得
,根據(jù)余角的性質(zhì)可得
,從而可得
,于是可得結(jié)論;
(2)①由
、
可得
,然后根據(jù)直角三角形斜邊中線的性質(zhì)即得結(jié)論;
②解法一:如圖1,延長(zhǎng)
交
于點(diǎn)
,易證
是等腰直角三角形,即
,設(shè)
,則
,由
為等腰直角三角形可得
,進(jìn)而可得
,由
即可求出x的值,即為AE的值;
解法二:如圖2,過(guò)點(diǎn)
作
交
的延長(zhǎng)線于點(diǎn)
,根據(jù)AAS易證![]()
![]()
,所以
,
,從而可得
是等腰直角三角形,由CG=2可得MC的長(zhǎng),進(jìn)而可得MB的長(zhǎng),即為AE的長(zhǎng);
解法三:如圖3,過(guò)點(diǎn)
作
于點(diǎn)
,由B、C、F、G四點(diǎn)共圓可得∠BCG=∠BFG=45°,從而可得
是等腰直角三角形,可得
,進(jìn)而可得NH的長(zhǎng),由
即可求出FC,即為AE的長(zhǎng).
(1)證明:①∵四邊形
是正方形,
∴
,
.
∵
,
∴△
為等腰直角三角形,
∴
,
∴
,
∴
,
∴![]()
![]()
;
![]()
②∵![]()
![]()
,
∴
.
∵
,
∴
.
∵
,
∴
,
∴
,
∴
;
![]()
(2)①在點(diǎn)
運(yùn)動(dòng)過(guò)程中,
的長(zhǎng)度不變.
∵
,
,
∴
.
∵
,
∴
(定值);
②解法一:如圖1,延長(zhǎng)
交
于點(diǎn)
.
∵
,
,
∴
.
∵
,
∴
是等腰直角三角形,即
.
設(shè)
,則
.
∵
為等腰直角三角形,
,
∴
.
∵
,
∴
,
∴
.
在等腰
中,∵
,∴
.
解得:
,即
.
![]()
②解法二:如圖2,過(guò)點(diǎn)
作
交
的延長(zhǎng)線于點(diǎn)
,則∠MGB=∠CGF,
∵∠M+∠MCG=90°,∠GCF+∠MCG=90°,
∴∠M=∠GCF,
又∵GB=GF,
∴![]()
![]()
,
∴
,
,
∴
是等腰直角三角形,
∴![]()
,
∴
,
∴
.
![]()
②解法三:如圖3,過(guò)點(diǎn)
作
于點(diǎn)
,
∵∠BGF+∠BCF=180°,
∴B、C、F、G四點(diǎn)共圓,
∴∠BCG=∠BFG=45°,
∴
是等腰直角三角形,
∴
,
∴
.
∵
,即
,
∴
,
∴
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某軟件開(kāi)發(fā)公司開(kāi)發(fā)了A、B兩種軟件,每種軟件成本均為1400元,售價(jià)分別為2000元、1800元,這兩種軟件每天的銷(xiāo)售額共為112000元,總利潤(rùn)為28000元.
(1)該店每天銷(xiāo)售這兩種軟件共多少個(gè)?
(2)根據(jù)市場(chǎng)行情,公司擬對(duì)A種軟件降價(jià)銷(xiāo)售,同時(shí)提高B種軟件價(jià)格.此時(shí)發(fā)現(xiàn),A種軟件每降50元可多賣(mài)1件,B種軟件每提高50元就少賣(mài)1件.如果這兩種軟件每天銷(xiāo)售總件數(shù)不變,那么這兩種軟件一天的總利潤(rùn)最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PA,PB,AB,已知∠PBA=∠C.
![]()
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為
,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑長(zhǎng)為1,AB、AC是⊙O的兩條弦,且AB=AC,BO的延長(zhǎng)線交AC于點(diǎn)D,連接OA、OC.
![]()
(1)求證:△OAD∽△ABD;
(2)當(dāng)△OCD是直角三角形時(shí),求B、C兩點(diǎn)的距離;
(3)記△AOB、△AOD、△COD的面積分別為S1、S2、S3,如果S22=S1S3,試證明點(diǎn)D為線段AC的黃金分割點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,M,N是以AB為直徑的⊙O上的點(diǎn),且
=
,弦MN交AB于點(diǎn)C,BM平分∠ABD,MF⊥BD于點(diǎn)F.
![]()
(1)求證:MF是⊙O的切線;
(2)若CN=3,BN=4,求CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線
的對(duì)稱軸是
,且過(guò)點(diǎn)
,有下列結(jié)論:①
;②
;③
;④
;⑤
.其中正確的結(jié)論是______.(填序號(hào))
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角
中,
,
,
,將
繞點(diǎn)
按逆時(shí)針?lè)较蛐D(zhuǎn),得到
.(1)如圖1,當(dāng)點(diǎn)
在線段
的延長(zhǎng)線上時(shí),則
的度數(shù)為______________度;(2)如圖2,點(diǎn)
為線段
中點(diǎn),點(diǎn)
是線段
上的動(dòng)點(diǎn),在
繞點(diǎn)
按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)
的對(duì)應(yīng)點(diǎn)是點(diǎn)
,則線段
長(zhǎng)度最小值是_____________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
中,
,
,點(diǎn)
在邊
上運(yùn)動(dòng)(不與點(diǎn)
,
重合),以
為邊作正方形
,使點(diǎn)
在正方形
內(nèi),連接
,則下列結(jié)論:①
;②當(dāng)
時(shí),
;③點(diǎn)
到直線
的距離為
;④
面積的最大值是
.其中正確的結(jié)論是______.(填寫(xiě)所有正確結(jié)論的序號(hào))
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,按以下步驟作圖:①以點(diǎn)B為圓心,任意長(zhǎng)為半徑作弧,分別交BA、BC于點(diǎn)M、N;再以點(diǎn)N為圓心,MN長(zhǎng)為半徑作弧交前面的弧于點(diǎn)F,作射線BF交AC的延長(zhǎng)線于點(diǎn)E.
②以點(diǎn)B為圓心,BA長(zhǎng)為半徑作弧交BE于點(diǎn)D,連接CD.
請(qǐng)你觀察圖形,解答下列問(wèn)題:
(1)求證:△ABC≌△DBC;
(2)若∠A=100°,∠E=50°,求∠ACB的度數(shù).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com