【題目】一輛慢車(chē)和一輛快車(chē)沿相同路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖象如圖所示,下列說(shuō)法正確的有()個(gè)
![]()
①快車(chē)追上慢車(chē)需6小時(shí)
②慢車(chē)比快車(chē)早出發(fā)2小時(shí)
③快車(chē)速度為46km/h
④慢車(chē)速度為46km/h
⑤AB兩地相距828km
⑥快車(chē)14小時(shí)到達(dá)B地
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】
①由圖可直接得到快車(chē)追上慢車(chē)的時(shí)間;
②由圖可直接得到慢車(chē)比快車(chē)早出發(fā)的時(shí)間;
③④從圖中得到行至276km時(shí)兩車(chē)所用時(shí)間,利用速度
解答;
⑤求出慢車(chē)行駛的函數(shù)解析式,將x=18代入解析式,求出y的值即為求A、B兩地之間的路程.
①快車(chē)從慢車(chē)出發(fā)后2小時(shí)出發(fā),6小時(shí)時(shí)相遇,用了6﹣2=4小時(shí)追上快車(chē),故①錯(cuò)誤;
②由圖象可知:慢車(chē)比快車(chē)早出發(fā)2小時(shí),故②正確;
③快車(chē)速度:
69km/h,故③錯(cuò)誤;
④慢車(chē)速度:
46km/h,故④正確;
⑤設(shè)慢車(chē)行駛的解析式為y=kx,將(6,276)代入解析式得:276=6k,解得:k=46,解析式為y=46x,當(dāng)x=18時(shí),y=46×18=828(km).故AB之間的距離為828km,故⑤正確.
⑥由圖象可知:快車(chē)到達(dá)B地所用時(shí)間=14-2=12(小時(shí)),故⑥錯(cuò)誤.
故選B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,0),B(0,3),將Rt△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到Rt△COD,CD的延長(zhǎng)線,交AB于點(diǎn)E,連接BC,二次函數(shù)
的圖象過(guò)點(diǎn)A、B、C.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P是線段BC上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)∠PBC=75°時(shí),求點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)F,在拋物線的對(duì)稱(chēng)軸上,是否存在一點(diǎn)Q,使得以點(diǎn)Q、O、F為頂點(diǎn)的三角形,與△BDE相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,記
與
的函數(shù)
(
≠0,n≠0)的圖象為圖形G, 已知圖形G與
軸交于點(diǎn)
,當(dāng)
時(shí),函數(shù)
有最小(或最大)值n, 點(diǎn)B的坐標(biāo)為(
,
),點(diǎn)A、B關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)分別為C、D,若A、B、C、D中任何三點(diǎn)都不在一直線上,且對(duì)角線AC,BD的交點(diǎn)與原點(diǎn)O重合,則稱(chēng)四邊形ABCD為圖形G的伴隨四邊形,直線AB為圖形G的伴隨直線.
![]()
(1)如圖,若函數(shù)
的圖象記為圖形G,求圖形G的伴隨直線的表達(dá)式;
(2)如圖,若圖形G的伴隨直線的表達(dá)式是
,且伴隨四邊形的面積為12,求
與
的函數(shù)
(m>0,n <0)的表達(dá)式;
![]()
(3)如圖,若圖形G的伴隨直線是
,且伴隨四邊形ABCD是矩形,求點(diǎn)B的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
![]()
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.
(1)該店每天賣(mài)出這兩種菜品共多少份?
(2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣(mài)時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣(mài)1份;B種菜品售價(jià)每提高0.5元就少賣(mài)1份,如果這兩種菜品每天銷(xiāo)售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線
與坐標(biāo)軸分別交于A、B兩點(diǎn),OA=8,OB=6.動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿路線O→A→B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),到達(dá)B點(diǎn)時(shí)運(yùn)動(dòng)停止.
(1)則A點(diǎn)的坐標(biāo)為_____,B兩點(diǎn)的坐標(biāo)為______;
(2)當(dāng)點(diǎn)P在OA上,且BP平分∠OBA時(shí),則此時(shí)點(diǎn)P的坐標(biāo)為______;
(3)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤4),△BPA的面積為S,求S與t之間的函數(shù)關(guān)系式:并直接寫(xiě)出當(dāng)S=8時(shí)點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=120°,將菱形折疊,使點(diǎn)A恰好落在對(duì)角線BD上的點(diǎn)G處(不與B、D重合),折痕為EF,若BC=4,BG=3,則GE的長(zhǎng)為________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,D為BC的中點(diǎn),連接AD,E為AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:四邊形ADCF為平行四邊形.
(2)當(dāng)四邊形ADCF為矩形時(shí),AB與AC應(yīng)滿足怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形
中,
,頂點(diǎn)
是原點(diǎn),頂點(diǎn)
在
軸上,頂點(diǎn)
的坐標(biāo)為
,
,
,點(diǎn)
從點(diǎn)
出發(fā),以
的速度向點(diǎn)
運(yùn)動(dòng),點(diǎn)
從點(diǎn)
同時(shí)出發(fā),以
的速度向點(diǎn)
運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng);從運(yùn)動(dòng)開(kāi)始,設(shè)
點(diǎn)運(yùn)動(dòng)的時(shí)間為
.
![]()
求直線
的函數(shù)解析式;
當(dāng)
為何值時(shí),四邊形
是矩形?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com