欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 初中數學 > 題目詳情
已知:如圖,在△ABC中,AB=AC=15,cos∠A=.點M在AB邊上,AM=2MB,點P是邊AC上的一個動點,設PA=x.
(1)求底邊BC的長;
(2)若點O是BC的中點,聯接MP、MO、OP,設四邊形AMOP的面積是y,求y關于x的函數關系式,并出寫出x的取值范圍;
(3)把△MPA沿著直線MP翻折后得到△MPN,是否可能使△MPN的一條邊(折痕邊PM除外)與AC垂直?若存在,請求出x的值;若不存在,請說明理由.

【答案】分析:(1)作BH⊥AC于點H,求出AH=12,BH=9,求出CH,根據勾股定理得出BC2=BH2+CH2,求出即可;
(2)作OE⊥AB于點E,OF⊥AC于點F,求出OE=OF=BH=,求出PC=15-x,根據y=S△ABC-S△BOM-S△COP和三角形面積公式求出即可;
(3)①當PN⊥AC時,作MG⊥AC于點G,求出AG=8,MG=6,①若點P1在AG上,由折疊知∠AP1M=135°,求出P1G=MG=6,代入AP1=AG-P1G求出即可;②若點P2在CG上,由折疊知∠AP2M=45°,求出P2G=MG=6,代入AP2=AG+P2G求出即可;③當MN⊥AC時,
由折疊知∠AMP3=∠NMP3,求出P3G=8-x,GN3=4,根據P3N32=P3G2+GN32得出x2=(8-x)2+42,求出即可.
解答:解:
(1)作BH⊥AC于點H,如圖1,
∵在Rt△ABH中,cos∠A=,AB=15,
∴AH=12,
∴BH=9,
∵AC=15,
∴CH=3,
∵BC2=BH2+CH2
∴BC2=92+32=90,
∴BC=3

(2)作OE⊥AB于點E,OF⊥AC于點F,如圖2,
∵點O是BC的中點,
∴OE=OF=BH=,
∵AM=2MB,AB=AC=15,
∴AM=10,BM=5,
∵PA=x,
∴PC=15-x,
∴y=S△ABC-S△BOM-S△COP
=BH•AC-OE•BM-OF•PC
=×9×15-××5-××(15-x)
即y=x+.定義域是0<x≤15.

(3)①當PN⊥AC時,如圖2,作MG⊥AC于點G,
∵在Rt△AMG中,cos∠A=,AM=10,
∴AG=8,
∴MG=6,
①若點P1在AG上,由折疊知:∠AP1M=135°,
∴∠MP1G=45°,
∵MG⊥AC,
∴P1G=MG=6,
∴AP1=AG-P1G=2.
②若點P2在CG上,由折疊知:∠AP2M=45°,
∵MG⊥AC,
∴P2G=MG=6,
∴AP2=AG+P2G=14.
③當MN⊥AC時,如圖3,
由折疊知:∠AMP3=∠NMP3,P3N3=AP3=x,MN3=MA=10,
∴P3G=8-x,GN3=4,
∵P3N32=P3G2+GN32,
∴x2=(8-x)2+42,
∴x=5,
綜上所述,x=2或5或14時滿足△MPN的一條邊與AC垂直.
點評:本題考查了折疊性質,勾股定理,解直角三角形等知識點的應用,主要考查學生綜合運用性質進行推理和計算的能力,題目比較好,難度偏大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案