【題目】某開(kāi)發(fā)公司生產(chǎn)的960件新產(chǎn)品需要精加工后才能投放市場(chǎng),F(xiàn)有甲、乙兩個(gè)工廠都想加工這批產(chǎn)品,已知甲廠單獨(dú)加工這批產(chǎn)品比乙工廠單獨(dú)加工完這批產(chǎn)品多用20天,而甲工廠每天加工的數(shù)量是乙工廠每天加工數(shù)量的
,甲、乙兩個(gè)工廠每天各能加工多少個(gè)新產(chǎn)品?
【答案】甲、乙兩個(gè)工廠每天各能加工16個(gè)、24個(gè)新產(chǎn)品
【解析】
設(shè)乙每天加工新產(chǎn)品x件,則甲每天加工新產(chǎn)品
x件,甲單獨(dú)加工完這批產(chǎn)品需
天,乙單獨(dú)加工完這批產(chǎn)品需
天,根據(jù)題意找出等量關(guān)系:甲廠單獨(dú)加工這批產(chǎn)品所需天數(shù)-乙工廠單獨(dú)加工完這批產(chǎn)品所需天數(shù)=20,由等量關(guān)系列出方程求解.
設(shè)乙每天加工新產(chǎn)品x件,則甲每天加工新產(chǎn)品
x件,
根據(jù)題意得![]()
=20,
解得x=24,
經(jīng)檢驗(yàn),x=24符合題意,
則
x=24×
=16,
所以甲、乙兩個(gè)工廠每天各能加工16個(gè)、24個(gè)新產(chǎn)品;
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,任意四邊形ABCD,對(duì)角線AC、BD交于O點(diǎn),過(guò)各頂點(diǎn)分別作對(duì)角線AC、BD的平行線,四條平行線圍成一個(gè)四邊形EFGH.試想當(dāng)四邊形ABCD的形狀發(fā)生改變時(shí),四邊形EFGH的形狀會(huì)有哪些變化?完成以下題目:
![]()
(1)①當(dāng)ABCD為任意四邊形時(shí),四邊形EFGH為___________;
②當(dāng)四邊形ABCD為矩形時(shí),四邊形EFGH為___________;
③當(dāng)四邊形ABCD為菱形時(shí),四邊形EFGH為___________;
④當(dāng)四邊形ABCD為正方形時(shí),四邊形EFGH為___________;
(2)請(qǐng)對(duì)(1)中①③你所寫(xiě)的結(jié)論進(jìn)行證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在
中,動(dòng)點(diǎn)
在
邊上,以每秒
的速度從點(diǎn)
向點(diǎn)
運(yùn)動(dòng).
(1)如圖1,在運(yùn)動(dòng)過(guò)程中,若
平分
,且滿足
,求
的度數(shù).
(2)如圖2,在(1)的條件下,連結(jié)
并延長(zhǎng)與
的延長(zhǎng)線交于點(diǎn)
,連結(jié)
,若
,求
的面積.
(3)如圖3,另一動(dòng)點(diǎn)
在
邊上,以每秒
的速度從點(diǎn)
出發(fā),在
間往返運(yùn)動(dòng),
兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)
到達(dá)點(diǎn)
時(shí)停止運(yùn)動(dòng)(同時(shí)
點(diǎn)也停止),若
,求當(dāng)運(yùn)動(dòng)時(shí)間為多少秒時(shí),以D,四點(diǎn)組成的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)C與某建筑物底端B相距306米(點(diǎn)C與點(diǎn)B在同一水平面上),某同學(xué)從點(diǎn)C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測(cè)得該建筑物頂端A的俯角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )![]()
A.29.1米
B.31.9米
C.45.9米
D.95.9米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)A在射線CE上,∠C=∠D.
⑴如圖1,若AD∥BC,求證:BD∥AC;
⑵如圖2,若∠BAC=∠BAD,BD⊥BC,請(qǐng)?zhí)骄俊?/span>DAE與∠C的數(shù)量關(guān)系,寫(xiě)出你的探究結(jié)論,并加以證明;
⑶如圖3,在⑵的條件下,過(guò)點(diǎn)D作DF∥BC交射線于點(diǎn)F,當(dāng)∠DFE=8∠DAE時(shí),求∠BAD的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( )![]()
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)
,
,
,點(diǎn)
是三角形
邊
上任意一點(diǎn),三角形經(jīng)過(guò)平移后得到三角形
,點(diǎn)
的對(duì)應(yīng)點(diǎn)為
.
![]()
(1)直接寫(xiě)出點(diǎn)
的坐標(biāo)______________.
(2)畫(huà)出三角形
平移后的三角形
.
(3)在
軸上是否存在一點(diǎn)
,使三角形
的面積等于三角形
面積的
,若存在,請(qǐng)求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛(ài)好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:![]()
(1)九(1)班的學(xué)生人數(shù)為__ , 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m=10 , n=20 , 表示“足球”的扇形的圓心角是多少度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如何求tan75°的值?按下列方法作圖可解決問(wèn)題,如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長(zhǎng)CB至點(diǎn)M,在射線BM上截取線段BD,使BD=AB,連接AD,依據(jù)此圖可求得tan75°的值為( )![]()
A.2 ![]()
B.2+ ![]()
C.1+ ![]()
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com