分析 設(shè)點A的坐標為(a,$\frac{\sqrt{3}}{a}$),連接OC,則OC⊥AB,表示出OC,過點C作CD⊥x軸于點D,設(shè)出點C坐標,在Rt△OCD中,利用勾股定理可得出x2的值,進而得出結(jié)論.
解答
解:設(shè)A(a,$\frac{\sqrt{3}}{a}$),
∵點A與點B關(guān)于原點對稱,
∴OA=OB,
∵△ABC為等邊三角形,
∴AB⊥OC,OC=$\sqrt{3}$AO,
∵AO=$\sqrt{{a}^{2}+\frac{3}{{a}^{2}}}$,
∴CO=$\sqrt{3{a}^{2}+\frac{9}{{a}^{2}}}$,
如圖,過點C作CD⊥x軸于點D,則可得∠AOD=∠OCD(都是∠COD的余角),
設(shè)點C的坐標為(x,y),則tan∠AOD=tan∠OCD,
即$\frac{\frac{\sqrt{3}}{a}}{a}$=$\frac{x}{-y}$,
解得y=-$\frac{\sqrt{3}}{3}$a2x.
在Rt△COD中,CD2+OD2=OC2,
即y2+x2=3a2+$\frac{9}{{a}^{2}}$,
將y=-$\frac{\sqrt{3}}{3}$a2x代入,可得:
x2=$\frac{9}{{a}^{2}}$,
故x=$\frac{3}{a}$,y=-$\sqrt{3}$a,
則xy=-3$\sqrt{3}$,即k=-3$\sqrt{3}$.
故答案為:-3$\sqrt{3}$.
點評 本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 15 | B. | 15$\sqrt{2}$ | C. | 30 | D. | 30$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com