欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.如圖,拋物線L:y=-$\frac{1}{2}$(x-t)(x-t+4)(常數(shù)t>0)與x軸從左到右的交點(diǎn)為B,A,過線段OA的中點(diǎn)M作MP⊥x軸,交雙曲線y=$\frac{k}{x}$(k>0,x>0)于點(diǎn)P,且OA•MP=12.
(1)求k的值;
(2)當(dāng)t=1時(shí),求AB長,并求直線MP與L對稱軸之間的距離;
(3)把L在直線MP左側(cè)部分的圖象(含與直線MP的交點(diǎn))記為G,用t表示圖象G最高點(diǎn)的坐標(biāo).

分析 (1)設(shè)P(x,y),則可表示出MP,由M為OA的中點(diǎn),可求得OA,由條件可求得xy,則可求得k的值;
(2)把t=1,代入拋物線解析式,令y=0可求得A、B兩點(diǎn)的坐標(biāo),可求得AB的長,再求得拋物線的對稱軸和直線MP的方程,可求得直線MP與對稱軸之間的距離;
(3)可用t表示出A、B兩點(diǎn)的坐標(biāo),進(jìn)一步可表示出直線MP的解析式,再根據(jù)頂點(diǎn)的位置可求得其最大值,可表示出G的坐標(biāo).

解答 解:
(1)設(shè)P(x,y)則MP=y,
∵M(jìn)為OA的中點(diǎn),
∴OA=2x,
∵OA•MP=12,
∴2xy=12,
∴xy=6,
∴k=6;
(2)當(dāng)t=1,y=0時(shí),0=-$\frac{1}{2}$(x-1)(x-1+4),解得x=1或x=-3,
∴A(1,0)、B(-3,0),
∴AB=4;
∴拋物線L的對稱軸為直線x=$\frac{1+(-3)}{2}$=-1,
∵OA=1,
∴MP為直線x=$\frac{1}{2}$,
∴直線MP與L對稱軸之間的距離為$\frac{3}{2}$;
(3)在y=-$\frac{1}{2}$(x-t)(x-t+4)中,令y=0可得-$\frac{1}{2}$(x-t)(x-t+4)=0,解得x=t或x=t-4,
∴A(t,0),B(t-4,0),
∴拋物線L的對稱軸為直線x=$\frac{t+t-4}{2}$=t-2,
又∵M(jìn)P為直線x=$\frac{t}{2}$,
∴當(dāng)拋物線L的頂點(diǎn)在直線MP上或左側(cè)時(shí),即t-2≤$\frac{t}{2}$時(shí),解得t≤4,此時(shí),頂點(diǎn)(t-2,2)為圖象G最高點(diǎn)的坐標(biāo);
當(dāng)拋物線L的頂點(diǎn)在直線MP右側(cè)時(shí),即t-2>$\frac{t}{2}$時(shí),解得t>4,此時(shí)時(shí),交點(diǎn)直線MP與拋物線L的交點(diǎn)為($\frac{t}{2}$,-$\frac{1}{8}$t2+t),為圖象G最高點(diǎn)的坐標(biāo).

點(diǎn)評 本題為二次函數(shù)和反比例函數(shù)的綜合應(yīng)用,涉及二次函數(shù)的性質(zhì)、一元二次方程、分類討論思想和方程思想等知識.在(1)中注意方程思想的應(yīng)用,在(2)中求得A、B的坐標(biāo)是解題的關(guān)鍵,在(3)中注意分兩種情況.本題考查知識點(diǎn)較多,綜合性較強(qiáng),難度適中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.已知,如圖所示,在平面直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)A在反比例函數(shù)y=$\frac{4\sqrt{3}}{x}$(x>0)圖象上,∠AOB=30°,頂點(diǎn)B在x軸上,求此△OAB頂點(diǎn)A的坐標(biāo)和△OAB面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,∠ACB=90°,經(jīng)過點(diǎn)B的直線l(不與直線AB重合)與直線BC的夾角∠DBC=∠ABC,分別過點(diǎn)C、A作直線l的垂線,垂足分別為點(diǎn)D、E.
(1)問題發(fā)現(xiàn)
①若∠ABC=30°,如圖①,則$\frac{CD}{AE}$=$\frac{1}{2}$;②若∠ABC=45°,如圖②,則$\frac{CD}{AE}$=$\frac{1}{2}$.
(2)拓展探究
當(dāng)0°<∠ABC∠90°,$\frac{CD}{AE}$的值由有無變化?請僅就圖③的情形給出證明.
(3)問題解決
隨著△ABC的位置旋轉(zhuǎn),若直線CE、AB交于點(diǎn)F,且$\frac{CF}{EF}$=$\frac{5}{6}$,CD=4,請直接寫出線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.計(jì)算:
(1)2+50÷22×(-$\frac{1}{5}$)-1
(2)(-2.5)×8×(-4)×(-0.125)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,把紙片△A′BC沿DE折疊,點(diǎn)A′落在四邊形BCDE內(nèi)部點(diǎn)A處.
(1)寫出圖中一對全等的三角形,并寫出它們的所有對應(yīng)角.
(2)設(shè)∠AED的度數(shù)為x,∠ADE的度數(shù)為y,那么∠1,∠2的度數(shù)分別是多少?(用含有x或y的式子表式)
(3)∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變,請找出這個(gè)規(guī)律,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,直線l1:y1=-x+2與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P(m,3)為直線l1上一點(diǎn),另一直線l2:y2=$\frac{1}{2}$x+b過點(diǎn)P,與x軸交于點(diǎn)C.
(1)直接寫出m和b的值及點(diǎn)A、點(diǎn)C的坐標(biāo);
(2)若動(dòng)點(diǎn)Q從點(diǎn)C開始以每秒1個(gè)單位的速度向x軸正方向移動(dòng).設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)點(diǎn)Q在運(yùn)動(dòng)過程中,請直接寫出△APQ的面積S與t的函數(shù)關(guān)系式;
②求出當(dāng)t為多少時(shí),△APQ的面積等于3;
③是否存在t的值,使△APQ為等腰三角形?若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點(diǎn),過點(diǎn)A作AD⊥AB交BE的延長線于點(diǎn)D,CG平分∠ACB交BD于點(diǎn)G,F(xiàn)為AB邊上一點(diǎn),連接CF,且∠ACF=∠CBG.
(1)求證:AD∥CG;
(2)求證:△ACF≌△CBG;
(3)若CF=12,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,平面直角坐標(biāo)系中,四邊形OABC是長方形,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上且A(10,0),C(0,6),點(diǎn)D在AB邊上,將△CBD沿CD翻折,點(diǎn)B恰好落在OA邊上點(diǎn)E處.
(1)求點(diǎn)E的坐標(biāo);
(2)求折痕CD所在直線的函數(shù)表達(dá)式;
(3)請你延長直線CD交x軸于點(diǎn)F.
①求△COF的面積;
②在x軸上是否存在點(diǎn)P,使S△OCP=$\frac{1}{3}$S△COF?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,若四邊形ABCO為平行四邊形,則∠ADB=30°.

查看答案和解析>>

同步練習(xí)冊答案