【題目】為了解某!罢衽d閱讀工程”的開展情況,教育部門對該校初中生的閱讀情況進(jìn)行了隨機(jī)問卷調(diào)查,繪制了如下圖表: 初中生喜愛的文學(xué)作品種類調(diào)查統(tǒng)計表
種類 | 小說 | 散文 | 傳記 | 科普 | 軍事 | 詩歌 | 其他 |
人數(shù) | 72 | 8 | 21 | 19 | 15 | 2 | 13 |
![]()
根據(jù)上述圖表提供的信息,解答下列問題:
(1)喜愛小說的人數(shù)占被調(diào)查人數(shù)的百分比是多少?初中生每天閱讀時間的中位數(shù)在哪個時間段內(nèi)?
(2)將寫讀后感、筆記積累、畫圈點(diǎn)讀等三種方式稱為有記憶閱讀.請估計該,F(xiàn)有的2000名初中生中,能進(jìn)行有記憶閱讀的人數(shù)約是多少?
【答案】
(1)解:由統(tǒng)計圖可知喜愛小說的有72人,總?cè)藬?shù)為:72+8+21+19+15+2+13=150人,
∴喜愛小說的人數(shù)占被調(diào)查人數(shù)的百分比是72÷150×100%=48%;
由扇形統(tǒng)計圖可以得到A段的有150×40%=60人,
B段的有150×30%=45人,
C段的有150×20%=30人,
D段的有150×10%=15人,
∴初中生每天閱讀時間的中位數(shù)在B段
(2)解:由條形統(tǒng)計圖可以得到進(jìn)行有記憶閱讀的有18+30+12=60人,
∴該校有記憶閱讀的有2000×
=800人
【解析】(1)用喜歡小說的人數(shù)除以被調(diào)查的人數(shù)即可得到喜愛小說的人數(shù)所占的百分比;(2)先由條形統(tǒng)計圖得到進(jìn)行有記憶閱讀的人數(shù),再除以被調(diào)查的總?cè)藬?shù)乘以該校的總?cè)藬?shù)即可.
【考點(diǎn)精析】關(guān)于本題考查的統(tǒng)計表和扇形統(tǒng)計圖,需要了解制作統(tǒng)計表的步驟:(1)收集整理數(shù)據(jù).(2)確定統(tǒng)計表的格式和欄目數(shù)量,根據(jù)紙張大小制成表格.(3)填寫欄目、各項目名稱及數(shù)據(jù).(4)計算總計和合計并填入表中,一般總計放在橫欄最左格,合計放在豎欄最上格.(5)寫好表格名稱并標(biāo)明制表時間;能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況才能得出正確答案.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個正方形都有一個頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右第3個正方形中的一個頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則Sn的值為 . (用含n的代數(shù)式表示,n為正整數(shù)) ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx(a<0)的圖象過坐標(biāo)原點(diǎn)O,與x軸的負(fù)半軸交于點(diǎn)A,過A點(diǎn)的直線與y軸交于B,與二次函數(shù)的圖象交于另一點(diǎn)C,且C點(diǎn)的橫坐標(biāo)為﹣1,AC:BC=3:1.![]()
(1)求點(diǎn)A的坐標(biāo);
(2)設(shè)二次函數(shù)圖象的頂點(diǎn)為F,其對稱軸與直線AB及x軸分別交于點(diǎn)D和點(diǎn)E,若△FCD與△AED相似,求此二次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,
=
,以點(diǎn)B為圓心,BC長為半徑畫弧,交邊AD于點(diǎn)E.若AEED=
,則矩形ABCD的面積為 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=a(x2﹣2mx﹣3m2)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于C(0,﹣3),點(diǎn)D在二次函數(shù)的圖象上,CD∥AB,連接AD,過點(diǎn)A作射線AE交二次函數(shù)的圖象于點(diǎn)E,AB平分∠DAE.![]()
(1)用含m的代數(shù)式表示a;
(2)求證:
為定值;
(3)設(shè)該二次函數(shù)圖象的頂點(diǎn)為F,探索:在x軸的負(fù)半軸上是否存在點(diǎn)G,連接GF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點(diǎn)G即可,并用含m的代數(shù)式表示該點(diǎn)的橫坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=60°,半徑為3cm的⊙P沿邊OA從右向左平行移動,與邊OA相切的切點(diǎn)記為點(diǎn)C.
(1)⊙P移動到與邊OB相切時(如圖),切點(diǎn)為D,求劣弧
的長; ![]()
(2)⊙P移動到與邊OB相交于點(diǎn)E,F(xiàn),若EF=4
cm,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P(m,m)是反比例函數(shù)y=
在第一象限內(nèi)的圖象上一點(diǎn),以P為頂點(diǎn)作等邊△PAB,使AB落在x軸上,則△POB的面積為( ) ![]()
A.![]()
B.3 ![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家在學(xué)校O的北偏東60°方向,距離學(xué)校80米的A處,小華家在學(xué)校O的南偏東45°方向的B處,小華家在小明家的正南方向,求小華家到學(xué)校的距離.(結(jié)果精確到1米,參考數(shù)據(jù):
≈1.41,
≈1.73,
≈2.45)![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的一點(diǎn)H重合(H不與端點(diǎn)C,D重合),折痕交AD于點(diǎn)E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G.設(shè)正方形ABCD的周長為m,△CHG的周長為n,則
的值為( ) ![]()
A.![]()
B.![]()
C.![]()
D.隨H點(diǎn)位置的變化而變化
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com