欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖(1),在等邊的頂點B、C處各有一只蝸牛,它們同時出發(fā)△ABC分別以每分鐘1各單位的速度油B向C和由C向A爬行,其中一只蝸牛爬到終點s時,另一只也停止運動,經(jīng)過t分鐘后,它們分別爬行到D,P處,請問:
(1)在爬行過程中,BD和AP始終相等嗎?為什么?
(2)問蝸牛在爬行過程中BD與AP所成的∠DQA大小有無變化?請證明你的結(jié)論.
(3)若蝸牛沿著BC和CA的延長線爬行,BD與AP交于點Q,其他條件不變,如圖(2)所示,蝸牛爬行過程中的∠DQA大小變化了嗎?若無變化,請證明.若有變化,請直接寫出∠DQA的度數(shù).
分析:(1)根據(jù)等邊三角形性質(zhì)得出∠CAB=∠C=∠ABP=60°,AB=BC,根據(jù)SAS推出△BDC≌△APB即可.
(2)根據(jù)△BDC≌△APB得出∠CBD=∠BAP,根據(jù)三角形外角性質(zhì)求出∠DQA=∠ABC,即可求出答案.
(3)求出CP=AD,∠ACP=∠BAD,根據(jù)SAS推出△ABD≌△ACP,求出∠CAP=∠ABD,求出∠AQD=∠CAP+∠QAB=180°-∠CAB,即可求出答案.
解答:解:(1)在爬行過程中,BD和AP始終相等,
理由是:∵△ABC是等邊三角形,
∴∠CAB=∠C=∠ABP=60°,AB=BC,
在△BDC和△APB中,
BC=AB
∠C=∠ABP
CD=BP
,
∴△BDC≌△APB(SAS),
∴BD=AP.

(2)蝸牛在爬行過程中BD與AP所成的∠DQA大小無變化,
理由:∵△BDC≌△APB,
∴∠CBD=∠BAP,
∴∠DQA=∠DBA+∠BAP=∠DBA+∠CBD=∠ABC=60°,
即蝸牛在爬行過程中BD與AP所成的∠DQA大小無變化,始終是60°.

(3)蝸牛爬行過程中的∠DQA大小變化了,
理由是:根據(jù)題意得:BP=CD,
∵BC=AC,
∴CP=AD,
∵△ABC是等邊三角形,
∴AC=AB,∠CAB=∠ACB=60°,
∵∠ACP+∠ACB=180°,∠DAB+∠CAB=180°,
∴∠ACP=∠BAD,
在△ABD和△ACP中,
AB=AC
∠BAD=∠ACP
AD=CP
,
∴△ABD≌△ACP(SAS),
∴∠CAP=∠ABD,
∴∠AQD=∠ABD+∠BAQ=∠CAP+∠QAB
=180°-∠CAB
=180°-60°
=120°,
即蝸牛爬行過程中的∠DQA大小變化了,等于120°.
點評:本題考查了等邊三角形的性質(zhì),三角形外角性質(zhì),全等三角形的性質(zhì)和判定的應用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的對應邊相等,對應角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)(1)如圖1所示,在等邊△ABC中,點D是AB邊上的動點,以CD為一邊,向上作等邊△EDC,連接AE,求證:AE∥BC;
(2)如圖2所示,將(1)中等邊△ABC的形狀改成以BC為底邊的等腰三角形,所作△EDC相似于△ABC,請問仍有AE∥BC?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•六盤水)(1)觀察發(fā)現(xiàn)
   如圖(1):若點A、B在直線m同側(cè),在直線m上找一點P,使AP+BP的值最小,做法如下:
   作點B關于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.

   如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:
作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為
3
3

 (2)實踐運用
   如圖(3):已知⊙O的直徑CD為2,
AC
的度數(shù)為60°,點B是
AC 
的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為
2
2


  (3)拓展延伸
如圖(4):點P是四邊形ABCD內(nèi)一點,分別在邊AB、BC上作出點M,點N,使PM+PN+MN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:在等邊三角形ABC中,D、E分別在AB和AC上,且AD=CE,BE和CD相交于點P.
(1)說明△ADC≌△CEB;(2)求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1所示,等邊△ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分∠BAC,且AD⊥BC,則有∠BAD=30°,BD=CD=
1
2
AB
.于是可得出結(jié)論“直角三角形中,30°角所對的直角邊等于斜邊的一半”.

請根據(jù)從上面材料中所得到的信息解答下列問題:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,則BC=
a
2
a
2
;
(2)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點D,垂足為E,當BD=5cm,∠B=30°時,△ACD的周長=
15cm
15cm

(3)如圖3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中點,DE⊥AB,垂足為E,那么BE:EA=
3:1
3:1

(4)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點,且∠CAD=∠ABE,AD、BE交于點P,作BQ⊥AD于Q,猜想PB與PQ的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案