欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.如圖,等腰△ABC中,AB=AC,∠A=120,BC=6cm,線段AB垂直平分線交BC于M,交AB于E,AC的垂直平分線交BC于點(diǎn)N,交AC于點(diǎn)F,則MN=2cm.

分析 作輔助線,構(gòu)建等腰三角形ABM和直角三角形AMC,由等腰△ABC和∠A=120得兩底角為30°,再由垂直平分線的性質(zhì)得AM=BM,從而依次求得∠MAB=30°和∠MAC=90°,根據(jù)30°所對(duì)的直角邊是斜邊的一半及中位線定理的推論得AM=BM=MN=NC,則可知所求的MN=$\frac{1}{3}$BC,代入得結(jié)論.

解答 解:如圖,連接AM,
∵AB=AC,
∴∠B=∠C,
∵∠BAC=120°,
∴∠B=∠C=30°,
∵M(jìn)E是線段AB的垂直平分線,
∴AM=BM,
∴∠MAB=∠B=30°,
∴∠MAC=∠BAC-∠MAB=120°-30°=90°,
在Rt△MAC中,∠C=30°,
∴MC=2AM,
∵FN是AC的垂直平分線,
∴∠NFC=90°,AF=FC,
∴∠NFC=∠MAC=90°,
∴AM∥FN,
∴MN=NC=$\frac{1}{2}$MC,
∴AM=BM=MN=NC,
∴MN=$\frac{1}{3}$BC,
∵BC=6cm,
∴MN=2cm.

點(diǎn)評(píng) 本題考查了等腰三角形的性質(zhì)、判定及線段垂直平分線的性質(zhì);熟練掌握等腰三角形和垂直平分線的性質(zhì),如果已知中有垂直平分線,則考慮利用垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等進(jìn)行證明或連接輔助線;本題還利用了中位線的推論:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊,或利用平行線分線段成比例定理得出MN=NC,使問題得以解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.將一條寬度相同的紙帶按如圖所示方法折疊,已知∠1=135°,則∠2=67.5°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算:$\sqrt{1+201{4}^{2}+\frac{201{4}^{2}}{201{5}^{2}}}$-$\frac{1}{2015}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.面積為(ax2-ax)平方米的長方形土地一邊長是ax(x-1)米,則另一邊邊長是1米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.若(x+y)(2-x-y)+3=0,則x+y的值為3或-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.若整數(shù)a能被整數(shù)b整除,則一定存在整數(shù)n,使得$\frac{a}=n$,即a=bn.例如若整數(shù)a能被11整除,則一定存在整數(shù)n,使得$\frac{a}{11}$=n,即a=11n.一個(gè)能被11整除的自然數(shù)我們稱為“光棍數(shù)”,他的特征是奇位數(shù)字之和與偶位數(shù)字之和的差能被11整除,如:42559奇數(shù)位的數(shù)字之和為4+5+9=18.偶數(shù)位的數(shù)字之和為2+5=7.18-7=I1是11的倍數(shù).所以4259為“光棍數(shù)”.
①請(qǐng)你證明任意一個(gè)四位“光棍數(shù)”均滿足上述規(guī)律;
②若七位整數(shù)$\overline{175m62n}$能被11整除.請(qǐng)求出所有符合要求的七位整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖1,已知△ABC中,∠ACB=90°,AB=10,BC=6,點(diǎn)D為AB邊上任意一點(diǎn).
(1)填空:線段CD的取值范圍是4.8≤CD≤8.
(2)如圖2,當(dāng)CD為△ABC的角平分線時(shí),求CD的長.
(3)在題目(2)中,若把∠ACB的平分線CD改成∠CAB的平分線AG,其余條件均不變,如圖3,能求出AG的長嗎?請(qǐng)?jiān)囈辉嚕?br />

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.若(2x+a)(3x-4)=bx2-2x-8,則a+b=8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,直線AB交x軸于點(diǎn)A(a,0),交y軸于點(diǎn)B(0,b),且a,b滿足(a+b)2+(a-4)2=0.
(1)如圖1,若C的坐標(biāo)為(-1,0),且AH⊥BC于點(diǎn)H,AH交OB于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(2)如圖2,在(1)的基礎(chǔ)上連接OH,求證:∠AHO=45°.
(3)如圖3,在線段OA上有一點(diǎn)E滿足S△OEB:S△EAB=1:$\sqrt{2}$,直線AN平分△OAB的外角交BE的延長線于N,求∠N的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案