分析 首過D作DE∥AC交BC的延長線于E,過D作DF⊥BC于F,先求出△BDEE是等腰直角三角形推出DFF與BE的關系,進而根據(jù)梯形的面積公式即可求解.
解答 解:過D作DE∥AC交BC的延長線于E,過D作DF⊥BC于F.![]()
∵AD∥CB,DE∥AC,
∴四邊形ADEC是平行四邊形,
∴DE=AC,AD=CE=4
∵等腰梯形ABCD中,AB=CD,
∴DE=AC=BD,
∵AC⊥BD,CE∥AD,
∴DE⊥BD,
∴△BDE是等腰直角三角形,
又∵AD=4,BC=10,
∴DF=$\frac{1}{2}$BE=$\frac{1}{2}$(AD+BC)=$\frac{1}{2}$(4+10)=7,
∴梯形的面積為:$\frac{1}{2}$(4+10)×7=49.
故答案為:49.
點評 本題考查等腰梯形的性質(zhì),難度不大,注意在解題的過程中運算平行線的性質(zhì),另外要掌握等腰梯形的面積還等于對角線互相兩條對角線乘積的一半.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{2}{3}$ | B. | $\frac{7}{12}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{12}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com