【題目】已知:如圖1,在
中,直徑
,
,直線
,
相交于點(diǎn)
.
![]()
(Ⅰ)
的度數(shù)為_(kāi)________;(直接寫(xiě)出答案)
(Ⅱ)如圖2,
與
交于點(diǎn)
,求
的度數(shù);
(Ⅲ)如圖3,弦
與弦
不相交,求
的度數(shù).
【答案】(Ⅰ)
;(Ⅱ)
;(Ⅲ)
.
【解析】
(Ⅰ)連結(jié)OD,OC,BD,根據(jù)已知得到△DOC為等邊三角形,證出∠DOC=60°,從而得出∠DBE=30°,再根據(jù)直徑所對(duì)的圓周角是直角,求出∠E的度數(shù);
(Ⅱ)連結(jié)OD,OC,AC,根據(jù)已知得到△DOC為等邊三角形,證出∠DOC=60°,從而得出∠CAE=30°,再根據(jù)直徑所對(duì)的圓周角是直角,求出∠E的度數(shù).
(Ⅲ)連結(jié)OD,OC,根據(jù)已知得到△DOC為等邊三角形,證出∠DOC=60°,從而得出∠CBD=30°,再根據(jù)直徑所對(duì)的圓周角是直角,求出
的度數(shù).
解:(Ⅰ)連結(jié)OD,OC,BD,
![]()
∵OD=OC=CD=2
∴△DOC為等邊三角形,
∴∠DOC=60°
∴∠DBC=30°
∴∠EBD=30°
∵AB為直徑,
∴∠ADB=90°
∴∠E=90°-30°=60°;
故答案為:60°
(Ⅱ)連結(jié)
,
,
.
∵
,
∴
為等邊三角形,
∴
,
∴
,
∴
.
∵
為直徑,
∴
,
∴
.
![]()
(Ⅲ)連結(jié)
,
,
∵
,
∴
為等邊三角形,
∴
,
∴
.
∵
是圓的直徑,∴
.
∴在
中,有
.
∴
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)函數(shù),自變量x取a時(shí),函數(shù)值y也等于a,我們稱a為這個(gè)函數(shù)的不動(dòng)點(diǎn).如果二次函數(shù)y=x2+2x+c有兩個(gè)相異的不動(dòng)點(diǎn)x1、x2,且x1<1<x2,則c的取值范圍是( )
A. c<﹣3B. c<﹣2C. c<
D. c<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P是⊙O上一點(diǎn),連接OP,點(diǎn)A關(guān)于OP的對(duì)稱點(diǎn)C恰好落在⊙O上.
(1)求證:OP∥BC;
(2)過(guò)點(diǎn)C作⊙O的切線CD,交AP的延長(zhǎng)線于點(diǎn)D.如果∠D=90°,DP=1,求⊙O的直徑.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)
的圖象經(jīng)過(guò)點(diǎn)
,點(diǎn)
,點(diǎn)
,點(diǎn)
是拋物線上任意一點(diǎn),有下列結(jié)論:①二次函數(shù)
的最小值為
;②若
,則
;③若
,則
;④一元二次方程
的兩個(gè)根為1和
.其中正確結(jié)論的個(gè)數(shù)是( )
![]()
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形
的頂點(diǎn)
、
在
上,頂點(diǎn)
、
在
內(nèi),將正方形
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn),使點(diǎn)
落在
上.若正方形
的邊長(zhǎng)和
的半徑均為
,則點(diǎn)
運(yùn)動(dòng)的路徑長(zhǎng)為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市禮樂(lè)中學(xué)校團(tuán)委開(kāi)展“關(guān)愛(ài)殘疾兒童”愛(ài)心捐書(shū)活動(dòng),全校師生踴躍捐贈(zèng)各類書(shū)籍共
本.為了解各類書(shū)籍的分布情況,從中隨機(jī)抽取了部分書(shū)籍分四類進(jìn)行統(tǒng)計(jì):
.藝術(shù)類;
.文學(xué)類;
.科普類;
.其他,并將統(tǒng)計(jì)結(jié)果繪制成加圖所示的兩幅不完整的統(tǒng)計(jì)圖.
![]()
(1)這次統(tǒng)計(jì)共抽取了________本書(shū)籍,扇形統(tǒng)計(jì)圖中的
________,
的度數(shù)是________;
(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)請(qǐng)你估計(jì)全校師生共捐贈(zèng)了多少本文學(xué)類書(shū)籍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中,
的度數(shù)為120°,點(diǎn)P為弦AB上的一點(diǎn),連結(jié)OP并延長(zhǎng)交⊙O于點(diǎn)C,連結(jié)OB,AC.
(1)若P為AB中點(diǎn),且PC=1,求圓的半徑.
(2)若BP:BA=1:3,請(qǐng)求出tan∠OPA.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點(diǎn),且B(1,0)
(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,已知直線y=
x﹣
分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作y軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長(zhǎng)線上,連接QE.問(wèn):以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于
的一元二次方程
有實(shí)數(shù)根.
(1)求
的取值范圍.
(2)若該方程的兩個(gè)實(shí)數(shù)根為
、
,且
,求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com