【題目】如圖,在平面直角坐標(biāo)系中,直線
與坐標(biāo)軸分別交于
,
兩點(diǎn),以線段
為邊,在第一象限內(nèi)作正方形
,將正方形
沿
軸負(fù)方向,平移
個(gè)單位長度,使點(diǎn)
恰好落在直線
上,則
的值為________.
![]()
【答案】1
【解析】
如圖,作CN⊥OB于N,DM⊥OA于M,利用三角形全等,求出點(diǎn)D坐標(biāo)即可解決問題.
解:如圖作CN⊥OB于N,DM⊥OA于M,CN與DM交于點(diǎn)F,
∵直線y=-3x+3與x軸、y軸分別交于B、A兩點(diǎn),
∴點(diǎn)A(0,3),點(diǎn)B(1,0),
∵四邊形ABCD是正方形,
∴AB=AD=DC=BC,∠ABC=90°,
∵∠BAO+∠ABO=90°,∠ABO+∠CBN=90°,
∴∠BAO=∠CBN,
在△BAO和△CBN中,
,
∴△BAO≌△CBN(AAS),
∴BN=AO=3,CN=BO=1,
同理可以得到:DF=AM=BO=1,CF=DM=AO=3,
∴點(diǎn)F(4,4),D(3,4),
∵將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長度,使點(diǎn)D恰好落在直線y=3x-2上,
∴把y=4代入y=3x-2得,x=2,
∴a=3-2=1,
∴正方形沿x軸負(fù)方向平移a個(gè)單位長度后,點(diǎn)D恰好落在直線y=3x-2上時(shí),a=1,
故答案為1.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓. ![]()
(1)求證:AB是⊙O的切線;
(2)若AC=8,tan∠BAC=
,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個(gè)數(shù)是 ( )
①若三條線段的比為1:1:
,則它們組成一個(gè)等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個(gè)角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個(gè)直角梯形。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長分別為
和
的兩個(gè)正方形
和
并排放在一起,連結(jié)
并延長交
于點(diǎn)
,交
于點(diǎn)
,則
![]()
![]()
A.
B. 2
C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系
中,點(diǎn)
是直線
上一動(dòng)點(diǎn),將點(diǎn)
向右平移1個(gè)單位得到點(diǎn)
,點(diǎn)
,則
的最小值為________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在以AB為直徑的⊙O上,點(diǎn)C是
的中點(diǎn),過點(diǎn)C作CD垂直于AE,交AE的延長線于點(diǎn)D,連接BE交AC于點(diǎn)F. ![]()
(1)求證:CD是⊙O的切線;
(2)若cos∠CAD=
,BF=15,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線
與直線
交于
,
兩點(diǎn),點(diǎn)
是拋物線上
,
之間的一個(gè)動(dòng)點(diǎn),過點(diǎn)
分別作
軸、
軸的平行線與直線
交于點(diǎn)
,
.
![]()
(1)求拋物線的解析式;
(2)若
為
的中點(diǎn),求
的長;
(3)如圖,以
,
為邊構(gòu)造矩形
,設(shè)點(diǎn)
的坐標(biāo)為
,
①請求出
,
之間的關(guān)系式;②求出矩形
的周長最大時(shí),點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車輛經(jīng)過時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì)),其中AB⊥BC, EF∥BC,∠AEF=143°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標(biāo)志牌為多少米?(結(jié)果精確到0.1.參考數(shù)據(jù):sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com