欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.如圖,在矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,延長(zhǎng)BG交CD于點(diǎn)F,連接EF,若AB=3,AD=4,則△BCF的周長(zhǎng)為(  )
A.$\frac{13}{3}$B.$\frac{25}{3}$C.10D.12

分析 過(guò)點(diǎn)E作EM⊥BC于M,交BF于N,根據(jù)矩形的性質(zhì)得到∠A=∠ABC=90°,AD=BC,AE=BM=$\frac{1}{2}$AD=2,由折疊的性質(zhì)得到AE=GE=2,∠EGN=∠A=90°,根據(jù)全等三角形的性質(zhì)得到NG=NM,根據(jù)勾股定理得到EN=$\frac{13}{6}$,NM=$\frac{5}{6}$,根據(jù)三角形的中位線的性質(zhì)得到CF=2NM=$\frac{5}{3}$,于是得到結(jié)論.

解答 解:過(guò)點(diǎn)E作EM⊥BC于M,交BF于N,
∵四邊形ABCD是矩形,
∴∠A=∠ABC=90°,AD=BC,
∵∠EMB=90°,
∴四邊形ABME是矩形,
∴AE=BM=$\frac{1}{2}$AD=2,
由折疊的性質(zhì)得:AE=GE=2,∠EGN=∠A=90°,
∴EG=BM=2,
∵∠ENG=∠BNM,
在△ENG與△BNM中,$\left\{\begin{array}{l}{∠EGN=∠BMN=90°}\\{∠ENG=∠BNM}\\{EG=BM}\end{array}\right.$
∴△ENG≌△BNM(AAS),
∴NG=NM,
∴EN2=NG2+EG2,
∴EN2=22+(3-EN)2,
∴EN=$\frac{13}{6}$,
∴BN=EN=$\frac{13}{6}$,
∴NM=$\frac{5}{6}$,
∵E是AD的中點(diǎn),
∴AE=ED=BM=CM,
∵EM∥CD,
∴BN:NF=BM:CM,
∴BF=2BN=$\frac{13}{3}$,
∴CF=2NM=$\frac{5}{3}$,
∴△BCF的周長(zhǎng)=10,
故選C.

點(diǎn)評(píng) 此題考查了矩形的判定與性質(zhì)、折疊的性質(zhì)、三角形中位線的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面直角坐標(biāo)系中,點(diǎn)A(5,0),點(diǎn)B是y軸上一點(diǎn),若AB=$\sqrt{41}$,則點(diǎn)B的坐標(biāo)為B(0,±4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.【問(wèn)題發(fā)現(xiàn)】
       如圖1,△ACB和△DCE均為等邊三角形,若B,D,E在同一直線上,連接AE.
(1)請(qǐng)你在圖中找出一個(gè)與△AEC全等的三角形:△BDC;
(2)∠AEB的度數(shù)為60°;CE,AE,BE的數(shù)量關(guān)系為CE+AE=BE.
【拓展探究】
        如圖2,△ACB是等腰直角三角形,∠AEB=90°,連接CE,過(guò)點(diǎn)C作CD⊥CE,交BE于點(diǎn)D,試探究CE,AE,BE的數(shù)量關(guān)系,并說(shuō)明理由.
【解決問(wèn)題】
        如圖3,在正方形ABCD中,CD=5$\sqrt{2}$,點(diǎn)P為正方形ABCD外一點(diǎn),∠APC=90°,且AP=6,試求點(diǎn)P到CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.有這樣一個(gè)問(wèn)題:探究函數(shù)y=-$\sqrt{x+2}$+|x|的圖象與性質(zhì).?
小軍根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=-$\sqrt{x+2}$+|x|的圖象與性質(zhì)進(jìn)行了探究.
下面是小軍的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y=-$\sqrt{x+2}$+|x|的自變量x的取值范圍是x≥-2;
(2)表是y與x的幾組對(duì)應(yīng)值?
x-2-1.9-1.5-1-0.501234
y21.600.800-0.72-1.41-0.3700.761.55
在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(3)觀察圖象,函數(shù)的最小值是-$\sqrt{2}$;
(4)進(jìn)一步探究,結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì)(函數(shù)最小值除外):當(dāng)-2≤x<0時(shí),y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,把矩形ABCD沿EF折疊,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是(  )
A.16$\sqrt{3}$B.24C.12$\sqrt{3}$D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A(-1,0),B(3,0),C(0,-3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)M是直線l上的動(dòng)點(diǎn),且△MAC為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)M的坐標(biāo);
(3)將拋物線向右平移h(h>0)個(gè)單位,所得新拋物線與x軸交于點(diǎn)A1、B1,與原拋物線的交點(diǎn)為P,連結(jié)PA1、PB1,當(dāng)△PA1B1的面積為2時(shí),求此時(shí)h的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a>b,則?a+2>b+2,-3a<-3b?(用“>”或“<”填空)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,已知四邊形ABCD是矩形,對(duì)角線AC、BD交于點(diǎn)O,CE∥BD,DE∥AC,CE與DE交于點(diǎn)E.
求證:四邊形OCED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,矩形ABCD的長(zhǎng)AD=5cm,寬AB=3cm,長(zhǎng)和寬都增加xcm,那么面積增加ycm2
(1)寫出y與x的函數(shù)關(guān)系式;
(2)當(dāng)增加的面積y=20cm2時(shí),求相應(yīng)的x是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案