如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結(jié)CB與DG交于點N.
![]()
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=
,求BN的長.
(1)見解析(2)見解析(3)![]()
【解析】解:(1)證明:∵△BCO中,BO=CO,∴∠B=∠BCO。
在Rt△BCE中,∠2+∠B=900,∠1=∠2,∴∠1+∠BCO=900,即∠FCO=90°。
∵OC是⊙O的半徑,∴CF是⊙O的切線。
(2)證明:∵AB是⊙O直徑,∴∠ACB=∠FCO=900。
∴∠ACB-∠BCO=∠FCO-∠BCO,即∠3=∠1。
∴∠3=∠2。
∵∠4=∠D,∴△ACM∽△DCN。
![]()
(3)∵⊙O的半徑為4,即AO=CO=BO=4,
在Rt△COE中,cos∠BOC=
,
∴OE=CO?cos∠BOC=4×
=1!郆E=3,AE=5。
由勾股定理可得:
,
。
∵AB是⊙O直徑,AB⊥CD,∴由垂徑定理得:CD=2CE=
。
∵點M是CO的中點,∴CM=
CO=
×4=2
∵△ACM∽△DCN,∴
,即
。
∴
。
(1)根據(jù)切線的判定定理得出∠1+∠BCO=900,即可得出答案;
(2)利用已知得出∠3=∠2,∠4=∠D,再利用相似三角形的判定方法得出即可。
(3)根據(jù)已知得出OE的長,從而利用勾股定理得出EC,AC,BC的長,即可得出CD,利用(2)中相似三角形的性質(zhì)得出NB的長即可。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com