【題目】如圖,直線
與坐標(biāo)軸交于點(diǎn)
、
兩點(diǎn),直線
與直線
相交于點(diǎn)
,交
軸于點(diǎn)
,且
的面積為
.
![]()
(1)求
的值和點(diǎn)
的坐標(biāo);
(2)求直線
的解析式;
(3)若點(diǎn)
是線段
上一動點(diǎn),過點(diǎn)
作
軸交直線
于點(diǎn)
,
軸,
軸,垂足分別為點(diǎn)
、
,是否存在點(diǎn)
,使得四邊形
為正方形,若存在,請求出點(diǎn)
坐標(biāo),若不存在,請說明理由.
【答案】(1)
,
點(diǎn)為
;(2)
;(3)存在,
點(diǎn)為
,理由見解析
【解析】
(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出m的值及點(diǎn)A的坐標(biāo);
(2)過點(diǎn)P作PH⊥x軸,垂足為H,則PH=
,利用三角形的面積公式結(jié)合△PAC的面積為
,可求出AC的長,進(jìn)而可得出點(diǎn)C的坐標(biāo),再根據(jù)點(diǎn)P,C的坐標(biāo),利用待定系數(shù)法即可求出直線PC的解析式;
(3)由題意,可知:四邊形EMNQ為矩形,設(shè)點(diǎn)E的縱坐標(biāo)為t,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)E的坐標(biāo)為(t-3,t)、點(diǎn)Q的坐標(biāo)為(
,t),利用正方形的性質(zhì)可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.
解:(1)把點(diǎn)
代入直線
,
即
時,
直線
,當(dāng)
時,
得:
,
點(diǎn)為
(2)過點(diǎn)
作
軸,垂足為
,由(1)得,
![]()
∴ ![]()
![]()
解得:
![]()
點(diǎn)
為
設(shè)直線
為
,把點(diǎn)
、
代入,得:
解得:
直線
的解析式為
(3)由已知可得,四邊形
為矩形,
![]()
設(shè)點(diǎn)
的縱坐標(biāo)為
,則
得: ![]()
點(diǎn)為![]()
軸
點(diǎn)的縱坐標(biāo)也為![]()
點(diǎn)在直線
上,當(dāng)
時,
![]()
又![]()
當(dāng)
時,矩形
為正方形,所以![]()
故
點(diǎn)為![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點(diǎn)F,交⊙O于點(diǎn)D,DE⊥AB于點(diǎn)E,且交AC于點(diǎn)P,連結(jié)AD.
![]()
【1】求證:∠DAC =∠DBA;
【2】求證:
是線段AF的中點(diǎn)
【3】若⊙O 的半徑為5,AF =
,求tan∠ABF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形
中,
,
,點(diǎn)
從點(diǎn)
出發(fā),沿
向終點(diǎn)
勻速運(yùn)動,設(shè)點(diǎn)
走過的路程為
,
的面積為
,能正確反映
與
之間函數(shù)關(guān)系的圖象是( )
![]()
![]()
![]()
![]()
![]()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)
在
軸上,點(diǎn)
在
軸上.
![]()
(1)求直線
的解析式;
(2)若
軸上有一點(diǎn)
使得
時,求
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,DB切⊙O于點(diǎn)B,過點(diǎn)D作DC⊥OA于點(diǎn)C,DC與AB相交于點(diǎn)E.
(1)求證:DB=DE;
(2)若∠BDE=70°,求∠AOB的大。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將線段AB繞點(diǎn)A逆時針旋轉(zhuǎn)α度角得到線段AC,將線段AB繞點(diǎn)B逆時針旋轉(zhuǎn)α度角得到線段BD(0°<α<180°),連結(jié)BC、AD.當(dāng)α=_______度時,四邊形ACBD是菱形,并說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某校七~九年級某月課外興趣小組活動時間統(tǒng)計(jì)表,其中各年級同一興趣小組每次活動時間相同,文藝小組每次活動時間比科技小組每次活動時間多0.5小時.設(shè)文藝小組每次活動時間為
小時,請根據(jù)表中信息完成下列解答.
課外小組活動 總時間(小時) | 文藝小組 活動次數(shù) | 科技小組 活動次數(shù) | |
七年級 | 12.5 | 4 | 3 |
八年級 | 10.5 | 3 |
|
九年級 | 7 |
|
|
(1)科技小組每次活動時間為______小時(用含
的式子表示);
(2)求八年級科技小組活動次數(shù)
的值;
(3)直接寫出
______,
______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下數(shù)表是由從1 開始的連續(xù)自然數(shù)組成,觀察規(guī)律并完成各題的解答.
![]()
(1)表中第8行的最后一個數(shù)是_____,它是自然數(shù)_____的平方,第8行共有 _____個數(shù);
(2)用含n的代數(shù)式表示:第n行的第一個數(shù)是_____,最后一個數(shù)是_____,第n行共有_____個數(shù);
(3)求第n行各數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一張矩形紙ABCD沿著對角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.
![]()
![]()
(1)求證:
是等腰三角形;
(2)如圖2,過點(diǎn)D作
,交BC于點(diǎn)G,連接FG交BD于點(diǎn)O.
①試判斷四邊形BGDF的形狀,并說明理由;
②若
,
,求FG的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com