【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求證:無論m為何值時,這個方程總有兩個實數(shù)根;
(2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.
【答案】(1)證明見解析(2)19
【解析】試題分析:(1)先計算判別式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根據(jù)非負(fù)數(shù)的值得到△≥0,然后根據(jù)判別式的意義得到方程總有兩個實數(shù)根;
(2)利用因式分解法解方程得到x1=1,x2=
,然后利用整數(shù)的整除性確定正整數(shù)m的值.
(1)證明:∵m≠0,
△=(m+2)2﹣4m×2
=m2﹣4m+4
=(m﹣2)2,
而(m﹣2)2≥0,即△≥0,
∴方程總有兩個實數(shù)根;
(2)解:(x﹣1)(mx﹣2)=0,
x﹣1=0或mx﹣2=0,
∴x1=1,x2=
,
當(dāng)m為正整數(shù)1或2時,x2為整數(shù),
即方程的兩個實數(shù)根都是整數(shù),
∴正整數(shù)m的值為1或2.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y=
(x>0)上的一動點(diǎn),過A作AC⊥y軸,垂足為點(diǎn)C,作AC的垂直平分線交雙曲線于點(diǎn)B,交x軸于點(diǎn)D.當(dāng)點(diǎn)A在雙曲線上從左到右運(yùn)動時,對四邊形ABCD的面積的變化情況,小明列舉了四種可能:
![]()
①逐漸變;
②由大變小再由小變大;
③由小變大再由大變。
④不變.
你認(rèn)為正確的是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是等邊三角形
內(nèi)一點(diǎn),將線段
繞點(diǎn)
順時針旋轉(zhuǎn)60°得到線段
,連接
.若
,則四邊形
的面積為____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx的圖象過點(diǎn) (2,0),(-1,6).
(1)求二次函數(shù)的關(guān)系式;
(2)寫出它的對稱軸和頂點(diǎn)坐標(biāo);
(3)請說明x在什么范圍內(nèi)取值時,函數(shù)值y<0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求證:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點(diǎn)E.F分別在邊AD、CD上,∠EBF=45°,則△EDF
的周長等于_______。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“百度”搜索引擎中輸入“姚明”,能搜索到與之相關(guān)的網(wǎng)頁約27000000個,將這個數(shù)用科學(xué)記數(shù)法表示為( 。
A.2.7×105
B.2.7×106
C.2.7×107
D.2.7×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有人在岸上點(diǎn)C的地方,用繩子拉船靠岸開始時,繩長CB=5米,拉動繩子將船身向岸邊行駛了2米到點(diǎn)D后,繩長CD=
米,求岸上點(diǎn)C離水面的高度CA.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com