【題目】定義:如果函數(shù)C:
(
)的圖象經(jīng)過點(m,n)、(-m,-n),那么我們稱函數(shù)C為對稱點函數(shù),這對點叫做對稱點函數(shù)的友好點.
例如:函數(shù)
經(jīng)過點(1,2)、(-1,-2),則函數(shù)
是對稱點函數(shù),點(1,2)、(-1,-2)叫做對稱點函數(shù)的友好點.
(1)填空:對稱點函數(shù)
一個友好點是(3,3),則b= ,c= ;
(2)對稱點函數(shù)
一個友好點是(2b,n),當2b≤x≤2時,此函數(shù)的最大值為
,最小值為
,且
=4,求b的值;
(3)對稱點函數(shù)
(
)的友好點是M、N(點M在點N的上方),函數(shù)圖象與y軸交于點A.把線段AM繞原點O順時針旋轉(zhuǎn)90°,得到它的對應(yīng)線段A′M′.若線段A′M′與該函數(shù)的圖象有且只有一個公共點時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.
【答案】(1)b=1,c=9;(2)b=0或b=
或b=
;(3)
或![]()
【解析】
(1)由題可知函數(shù)圖象過點(3,3),(-3,-3),代入即可求出b,c的值;
(2)代入函數(shù)的友好點,求出函數(shù)解析式y=x2+2bx-4b2=(x+b)2-5b2,再根據(jù)二次函數(shù)的圖象及性質(zhì)分三種情況分析討論;
(3)由
推出
,再根據(jù)“友好點”是M(2,2)N(-2,-2)旋轉(zhuǎn)后M′(2,-2) A′(-4a,0),將(-4a,0)代
得出
,根據(jù)圖象即可得出結(jié)論.
解:(1)由題可知函數(shù)圖象過點(3,3),(-3,-3),代入函數(shù)
(
),得![]()
解得:b=1,c=9;
(2)由題意得另一個友好數(shù)為(-2b,-n)
∴-n=4b2-4b2+c
∴c=-n
∴y=x2+2bx-n
把(2b,n)代入y=x2+2bx-n
n=4b2+4b2-n
∴n=4b2
∴y=x2+2bx-4b2=(x+b)2-5b2
當-b<2b即b>0時
∵拋物線開口向上
∴在對稱軸右側(cè),y隨x增大而增大
∴當x=2b時,y1=4b2
當x=2時,y2=-4b2+4b+4
∵y1-y2=4
∴-4b2+4b+4-4b2=4
∴-8b2+4b=0
∴b1=0(舍)b2=![]()
當2<-b,即b<-2時
在對稱軸左側(cè),y隨x增大而減小
∴當x=2b時,y1=4b2
當x=2時,y2=-4b2+4b+4
∵y1-y2=4
∴4b2+4b2-4b-4=4
∴8b2-4b-8=0
∴2b2-b-2=0
b=
(舍)
當2b≤-b≤2,即-2≤b≤0時y2=-5b2
當x=2時,y1=-4b2+4b+4
∵y
∴-4b2+4b+4+5b2=4
∴b2+4b=0
∴b1=0,b2=-4(舍)
當x=2b時,y1=4b2
∵y1-y2=4
∴9b2=4
∴b=
(舍)b=![]()
∴b=0或b=
或b=
;
(3)
推出 ![]()
“友好點”是M(2,2)N(-2,-2)旋轉(zhuǎn)后M’(2,-2) A’(-4a,0)
將(-4a,0)代入
![]()
當a>0時 當拋物線經(jīng)過A′后有兩個交點 ∴![]()
當a<0時,當拋物線經(jīng)過A′點以后,開始于拋物線有一個交點 ∴![]()
![]()
![]()
綜上:
或
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c為正數(shù),若關(guān)于x的一元二次方程ax2+bx+c=0有兩個實數(shù)根,則關(guān)于x的方程a2x2+b2x+c2=0解的情況為( )
A.有兩個不相等的正根B.有一個正根,一個負根
C.有兩個不相等的負根D.不一定有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小紅遇到這樣一個問題:如圖1,在四邊形ABCD中,∠A=∠C=90°,∠D=60°,AB=
,BC=
,求AD的長.
小紅發(fā)現(xiàn),延長AB與DC相交于點E,通過構(gòu)造Rt△ADE,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
請回答:AD的長為 .
參考小紅思考問題的方法,解決問題:
如圖3,在四邊形ABCD中,tanA=
,∠B=∠C=135°,AB=9,CD=3,求BC和AD的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點
在雙曲線上,
垂直
軸,垂足為
,點
在
上,
平行于
軸交雙曲線于點
,直線
與
軸交于點
,已知![]()
,點
的坐標為
.
![]()
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)直接寫出反比例函數(shù)值大于一次函數(shù)值時自變量的值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度h(單位:米)與飛行時間t(單位:秒)之間具有函數(shù)關(guān)系
,請根據(jù)要求解答下列問題:
![]()
(1)在飛行過程中,當小球的飛行高度為15米時,需要多少飛行時間?
(2)在飛行過程中,小球飛行高度何時達到最大?最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)
(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如下表:
x | … | -1 | 0 | 1 | 3 | … |
y | … | -3 | 1 | 3 | 1 | … |
則下列判斷中正確的是( )
A.拋物線開口向上B.拋物線與y軸交于負半軸
C.拋物線的頂點為(1,3)D.一元二次方程ax2+bx+c=0的正根在3與4之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有若干個質(zhì)地相同的紅球,為了估計袋中紅球的數(shù)量,某學(xué)習(xí)小組做了摸球試驗,他們將30個與紅球大小形狀完全相同的白球裝入袋中,攪勻后從中隨機摸出1個球并記下顏色,再把它放回袋中,多次重復(fù)摸球.下表是多次摸球試驗匯總后統(tǒng)計的數(shù)據(jù):
摸球的次數(shù) | 150 | 200 | 500 | 900 | 1 000 | 1 200 |
摸到白球的頻數(shù) | 51 | 64 | 156 | 275 | 303 | 361 |
摸到白球的頻率 | 0.320 | 0.312 | 0.306 | 0.303 | 0.302 | 0.301 |
(1)請估計:當摸球的次數(shù)很大時,摸到白球的頻率將會接近______;假如你去摸一次,你摸到紅球的概率是______;(精確到0.1)
(2)試估計口袋中紅球有多少個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABGC內(nèi)接于⊙O,GA平分∠BGC.
(1)求證:AB=AC;
(2)如圖2,過點A作AD∥BG交CG于點D,連接BD交線段AG于點W,若∠BAG+∠CAD=∠AWB,求證:BD=BG;
(3)在(2)的條件下,若CD=5,BD=16,求WG的長.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com