【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬
米時(shí),拱頂(拱橋洞的最高點(diǎn))離水面
,水面上升
時(shí),水面的寬度為________.
![]()
【答案】![]()
【解析】
根據(jù)已知得出直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過(guò)把y=1代入拋物線解析式得出水面寬度,即可得出答案.
建立平面直角坐標(biāo)系,設(shè)橫軸x通過(guò)AB,縱軸y通過(guò)AB中點(diǎn)O且通過(guò)C點(diǎn),則通過(guò)畫(huà)圖可得知O為原點(diǎn),
![]()
拋物線以y軸為對(duì)稱(chēng)軸,且經(jīng)過(guò)A,B兩點(diǎn),OA和OB可求出為AB的一半4米,拋物線頂點(diǎn)C坐標(biāo)為(0,4),
通過(guò)以上條件可設(shè)頂點(diǎn)式y=ax2+4,其中a可通過(guò)代入A點(diǎn)坐標(biāo)(-4,0)到拋物線解析式得出:a=-
,
所以拋物線解析式為y=-
x2+4,
當(dāng)水面上升1米,通過(guò)拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=1時(shí),對(duì)應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線y=1與拋物線相交的兩點(diǎn)之間的距離,
可以通過(guò)把y=1代入拋物線解析式得出:
1=-
x2+4,
解得:x=±2
,
所以水面寬度增加到4
米,
故答案為:4
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王師傅承包了一片池塘養(yǎng)水產(chǎn)品,他用總長(zhǎng)為88m的圍網(wǎng)圍成如圖所示的5個(gè)區(qū)域,其中②③④⑤四個(gè)區(qū)域面積相等.設(shè)AH=xm,整個(gè)矩形區(qū)域的面積為ym2.
(1)求y與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),y取最大值?最大值是多少?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)三角形中,如果一個(gè)角是另一個(gè)角的2倍,我們稱(chēng)這種三角形為倍角三角形.如圖1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的對(duì)邊分別記為a,b,c,倍角三角形的三邊a,b,c有什么關(guān)系呢?讓我們一起來(lái)探索.
![]()
(1)我們先從特殊的倍角三角形入手研究.請(qǐng)你結(jié)合圖形填空:
三三角形角形 | 角的已知量 |
|
|
圖2 | ∠A=2∠B=90° | ||
圖3 | ∠A=2∠B=60° |
(2)如圖4,對(duì)于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的對(duì)邊分別記為a,b,c,a,b,c,三邊有什么關(guān)系呢?請(qǐng)你作出猜測(cè),并結(jié)合圖4給出的輔助線提示加以證明;
(3)請(qǐng)你運(yùn)用(2)中的結(jié)論解決下列問(wèn)題:若一個(gè)倍角三角形的兩邊長(zhǎng)為5,6,求第三邊長(zhǎng).(直接寫(xiě)出結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程
有實(shí)數(shù)根.
(1)求m的值;
(2)先作
的圖象關(guān)于x軸的對(duì)稱(chēng)圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫(xiě)出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求
的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
為等腰三角形,頂點(diǎn)
的坐標(biāo)為
,底邊
在
軸上.將
繞點(diǎn)
按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后得
,點(diǎn)
的對(duì)應(yīng)點(diǎn)
在
軸上,那么點(diǎn)
的橫坐標(biāo)是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個(gè)無(wú)蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).當(dāng)豎直擺放圓柱形桶至少________個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大學(xué)畢業(yè)生小王響應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,利用銀行小額無(wú)息貸款開(kāi)辦了一家飾品店.該店購(gòu)進(jìn)一種今年新上市的飾品進(jìn)行銷(xiāo)售,飾品的進(jìn)價(jià)為每件
元,售價(jià)為每件
元,每月可賣(mài)出
件.市場(chǎng)調(diào)查反映:調(diào)整價(jià)格時(shí),售價(jià)每漲
元每月要少賣(mài)
件;售價(jià)每下降
元每月要多賣(mài)
件.為了獲得更大的利潤(rùn),現(xiàn)將飾品售價(jià)調(diào)整為
(元/件)(
即售價(jià)上漲,
即售價(jià)下降),每月飾品銷(xiāo)量為
(件),月利潤(rùn)為
(元).
直接寫(xiě)出
與
之間的函數(shù)關(guān)系式;
如何確定銷(xiāo)售價(jià)格才能使月利潤(rùn)最大?求最大月利潤(rùn);
為了使每月利潤(rùn)不少于
元應(yīng)如何控制銷(xiāo)售價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)
,
與坐標(biāo)原點(diǎn)O在同一直線上,且AO=BO,其中m,n滿足
.
![]()
(1)求點(diǎn)A,B的坐標(biāo);
(2)如圖1,若點(diǎn)M,P分別是x軸正半軸和y軸正半軸上的點(diǎn),點(diǎn)P的縱坐標(biāo)不等于2,點(diǎn)N在第一象限內(nèi),且
,PA⊥PN,
,求證:BM⊥MN;
(3)如圖2,作AC⊥y軸于點(diǎn)C,AD⊥x軸于點(diǎn)D,在CA延長(zhǎng)線上取一點(diǎn)E,使
,連結(jié)BE交AD于點(diǎn)F,恰好有
,點(diǎn)G是CB上一點(diǎn),且
,連結(jié)FG,求證:
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的高線,BD=CD,點(diǎn)E是AD上一點(diǎn),BE=BC,將△ABE沿BE所在直線折疊,點(diǎn)A落在點(diǎn)A′位置上,連接AA',BA′,EA′與AC相交于點(diǎn)H,BA′與AC相交于點(diǎn)F.小夏依據(jù)上述條件,寫(xiě)出下列四個(gè)結(jié)論:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°.以上結(jié)論中,正確的是( 。
![]()
A.①B.③④C.①②③D.①②④
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com