分析 先根據(jù)三角形的內(nèi)角和定理求出∠CEF+∠CFE=∠A+∠B,再根據(jù)折疊變換的性質(zhì),即可求出∠CEC′+∠CEC′的度數(shù),然后利用兩個平角的度數(shù)求解即可.
解答 解:如圖,∵∠CEF+∠CFE+∠C=∠A+∠B+∠C,
∴∠CEF+∠CFE=∠A+∠B=75°+65°=140°,
又將紙片的一角折疊,使點C落在△ABC內(nèi),
∴∠C′EF+∠C′F=∠CEF+∠CFE=140°,
∴∠CEC′+∠CEC′=140°+140°=280°,
∵∠1=40°,
∴∠2=180°×2-∠CEC′+∠CEC′-∠1=360°-280°-40°=40°.
故答案為:40°.
點評 本題考查了三角形的內(nèi)角和定理,翻折變換的性質(zhì),熟練掌握翻折變換的性質(zhì)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 星期 | 一 | 二 | 三 | 四 | 五 |
| 每股漲(元) | +2 | -0.5 | +1.5 | -1.8 | +0.8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 作兩邊的中垂線的交點 | B. | 作兩邊上的高線的交點 | ||
| C. | 作兩邊上的中線的交點 | D. | 作兩角平分線的交點 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{-25}$=-5 | B. | -$\sqrt{3.6}$=-0.6 | C. | $\sqrt{(-13)^{2}}$=13 | D. | $\sqrt{36}$=±6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a≤0 | B. | a≥0 | C. | a≠0 | D. | a為任意實數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com