【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項).為了解學(xué)生喜愛哪種社團(tuán)活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題: ![]()
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計圖補(bǔ)充完整;
(4)若該校有1500名學(xué)生,請估計喜歡體育類社團(tuán)的學(xué)生有多少人?
【答案】
(1)解:80÷40%=200(人)
∴此次共調(diào)查200人.
(2)解:
×360°=108°.
∴文學(xué)社團(tuán)在扇形統(tǒng)計圖中所占圓心角的度數(shù)為108°.
(3)解:補(bǔ)全如圖,
![]()
(4)解:1500×40%=600(人).
∴估計該校喜歡體育類社團(tuán)的學(xué)生有600人.
【解析】(1)由條形統(tǒng)計圖中“體育”的人數(shù)和其在扇形統(tǒng)計圖中所占的比可求得總?cè)藬?shù);
(2)由條形統(tǒng)計圖可知文學(xué)社團(tuán)的人數(shù),從而可得其所占的百分比,則其在扇形統(tǒng)計圖中所占圓心角的度數(shù)=所占的百分比×360°計算可得;
(3)先求出其他所占的百分比,用總?cè)藬?shù)乘以其百分比可得其他的人數(shù),可補(bǔ)全條形統(tǒng)計圖;
(4)用喜歡體育類社團(tuán)的百分比乘以1500可求得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計圖的相關(guān)知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司組織員工到附近的景點(diǎn)旅游,根據(jù)旅行社提供的收費(fèi)方案,繪制了如圖所示的圖象,圖中折線ABCD表示人均收費(fèi)y(元)與參加旅游的人數(shù)x(人)之間的函數(shù)關(guān)系.![]()
(1)當(dāng)參加旅游的人數(shù)不超過10人時,人均收費(fèi)為元;
(2)如果該公司支付給旅行社3600元,那么參加這次旅游的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生參加體育活動的情況,學(xué)校對學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,其中一個問題是“你平均每天參加體育活動的時間是多少”,共有4個選項:A、1.5小時以上;B、1~1.5小時;C、0.5~1小時;D、0.5小時以下.圖1、2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)本次一共調(diào)查了多少名學(xué)生?
(2)在圖1中將選項B的部分補(bǔ)充完整;
(3)若該校有3000名學(xué)生,你估計全?赡苡卸嗌倜麑W(xué)生平均每天參加體育活動的時間在0.5小時以下?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在市區(qū)內(nèi),我市乘坐出租車的價格
(元)與路程
(km)的函數(shù)關(guān)系圖象如圖所示.
![]()
(1)請你根據(jù)圖象寫出兩條信息;
(2)小明從學(xué)校出發(fā)乘坐出租車回家用了13元,求學(xué)校離小明家的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列推理及所注明的理由都正確的是:( )
![]()
A. 因為DE∥BC,所以∠1=∠C(同位角相等,兩直線平行)
B. 因為∠2=∠3,所以DE∥BC(兩直線平行,內(nèi)錯角相等)
C. 因為DE∥BC,所以∠2=∠3(兩直線平行,內(nèi)錯角相等)
D. 因為∠1=∠C,所以DE∥BC(兩直線平行,同位角相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿邊AB向終點(diǎn)B運(yùn)動.過點(diǎn)P作PQ⊥AB交折線ACB于點(diǎn)Q,D為PQ中點(diǎn),以DQ為邊向右側(cè)作正方形DEFQ.設(shè)正方形DEFQ與△ABC重疊部分圖形的面積是y(cm2),點(diǎn)P的運(yùn)動時間為x(s).![]()
(1)當(dāng)點(diǎn)Q在邊AC上時,正方形DEFQ的邊長為cm(用含x的代數(shù)式表示);
(2)當(dāng)點(diǎn)P不與點(diǎn)B重合時,求點(diǎn)F落在邊BC上時x的值;
(3)當(dāng)0<x<2時,求y關(guān)于x的函數(shù)解析式;
(4)直接寫出邊BC的中點(diǎn)落在正方形DEFQ內(nèi)部時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=
x的圖象經(jīng)過點(diǎn)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=
的圖象也經(jīng)過點(diǎn)A,第一象限內(nèi)的點(diǎn)B在這個反比例函數(shù)的圖象上,過點(diǎn)B作BC∥x軸,交y軸于點(diǎn)C,且AC=AB.求:![]()
(1)這個反比例函數(shù)的解析式;
(2)直線AB的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個長為2x、寬為2y的長方形,沿圖中虛線用剪刀剪成四個完全相同的小長方形,然后按圖2所示拼成一個正方形.![]()
(1)你認(rèn)為圖2中的陰影部分的正方形的邊長等于
(2)試用兩種不同的方法求圖2中陰影部分的面積.
方法1: 方法2:
(3)根據(jù)圖2你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(x+y)2,(x-y)2,4xy.
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:
若x+y=4,xy=3,則(x-y)2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△AOC是邊長為2的等邊三角形.
(1)寫出△AOC的頂點(diǎn)C的坐標(biāo):_____.
(2)將△AOC沿x軸向右平移得到△OBD,則平移的距離是_____
(3)將△AOC繞原點(diǎn)O順時針旋轉(zhuǎn)得到△OBD,則旋轉(zhuǎn)角可以是_____度
(4)連接AD,交OC于點(diǎn)E,求∠AEO的度數(shù).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com