【題目】如圖,已知直線y=﹣
x+3分別交x軸、y軸于點(diǎn)A、B,P是拋物線y=﹣
x2+2x+5的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為a,過點(diǎn)P且平行于y軸的直線交直線y=﹣
x+3于點(diǎn)Q,則當(dāng)PQ=BQ時(shí),a的值是 . ![]()
【答案】﹣1,4,4+2
,4﹣2 ![]()
【解析】解:設(shè)點(diǎn)P的坐標(biāo)為(a,﹣
a2+2a+5),
則點(diǎn)Q為(a,﹣
a+3),點(diǎn)B為(0,3),
①當(dāng)點(diǎn)P在點(diǎn)Q上方時(shí),BQ=
=|
a|,
PQ=﹣
a2+2a+5﹣(﹣
a+3)=﹣
a2+
a+2,
∵PQ=BQ,
當(dāng)a>0時(shí),
∴
a=﹣
a2+
a+2,
整理得:a2﹣3a﹣4=0,
解得:a=﹣1(舍去)或a=4,
當(dāng)a<0時(shí),則﹣
a=﹣
a2+
a+2,
解得:a=4+2
(舍去)或a=4﹣2
;
②當(dāng)點(diǎn)P在點(diǎn)Q下方時(shí),BQ=
=|
a|,
PQ=﹣
a+3﹣(﹣
a2+2a+5)=
a2﹣
a﹣2,
由題意得,PQ=BQ,
當(dāng)a>0時(shí),
則
a=
a2﹣
a﹣2,
整理得:a2﹣8a﹣4=0,
解得:a=4+2
或a=4﹣2
(舍去).
當(dāng)a<0時(shí),則﹣
a=
a2﹣
a﹣2,
解得:a=﹣1或a=4(舍去),
綜上所述,a的值為:﹣1,4,4+2
,4﹣2
.
所以答案是:﹣1,4,4+2
,4﹣2
.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:兩條拋物線頂點(diǎn)都在直線y=x上,且兩條拋物線關(guān)于原點(diǎn)成中心對稱,則稱這兩條拋物線為一對“友好拋物線”.![]()
![]()
(1)拋物線y=2(x-1)2+1如圖1所示,請畫出它的“友好拋物線”,并直接寫出它的解析式;
(確認(rèn)無誤后,請用黑色水筆描黑)
(2)一對“友好拋物線”,其中一條拋物線的解析式為y= -(x+h)2-h,這對“友好拋物線”與y軸交點(diǎn)記為A,B,記AB=n(當(dāng)A與B重合時(shí),記n=0),現(xiàn)我們來探究n與h的關(guān)系;
①當(dāng)h≥0時(shí),如圖2所示,求n與h的函數(shù)關(guān)系式;
②當(dāng)h<0時(shí),求n與h的函數(shù)關(guān)系式;
(3)在(2)的條件下,要使
≤n≤
,試直接寫出h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=
和y=﹣
的圖象分別是l1和l2 . 設(shè)點(diǎn)P在l1上,PC⊥x軸,垂足為C,交l2于點(diǎn)A,PD⊥y軸,垂足為D,交l2于點(diǎn)B,則△PAB的面積為 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市每天能出售甲、乙兩種肉集裝箱共21箱,且甲集裝箱3天的銷售量與乙集裝箱4天的銷售量相同.
(1)求甲、乙兩種肉類集裝箱每天分別能出售多少箱?
(2)若甲種肉類集裝箱的進(jìn)價(jià)為每箱200元,乙種肉類集裝箱的進(jìn)價(jià)為每箱180元,現(xiàn)超市打算購買甲、乙兩種肉類集裝箱共100箱,且手頭資金不到18080元,則該超市有幾種購買方案?
(3)若甲種肉類集裝箱的售價(jià)為每箱260元,乙種肉類集裝箱的售價(jià)為每箱230元,在(2)的情況下,哪種方案獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多邊形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,過點(diǎn)E作EF∥CB交AB于點(diǎn)F,F(xiàn)B=1,過AE上的點(diǎn)P作PQ∥AB交線段EF于點(diǎn)O,交折線BCD于點(diǎn)Q,設(shè)AP=x,POOQ=y.![]()
(1)①延長BC交ED于點(diǎn)M,則MD= , DC=;![]()
(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)a≤x≤
(a>0)時(shí),9a≤y≤6b,求a,b的值;
(4)當(dāng)1≤y≤3時(shí),請直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=9,S△ABC=
,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿射線AB方向以每秒5個(gè)單位的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā),以相同的速度在線段AC上由C向A運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正方形PQEF(P、Q、E、F按逆時(shí)針排序),以CQ為邊在AC上方作正方形QCGH.![]()
(1)求tanA的值;
(2)設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,正方形PQEF的面積為S,請?zhí)骄縎是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請說明理由;
(3)當(dāng)t為何值時(shí),正方形PQEF的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在正方形QCGH的邊上,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,O為BC的中點(diǎn),AB與⊙O相切于點(diǎn)D. ![]()
(1)求證:AC是⊙O的切線;
(2)若∠B=33°,⊙O的半徑為1,求BD的長.(結(jié)果精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】神仙居景區(qū)門票價(jià)格80元/人,景區(qū)為吸引游客,對門票價(jià)格進(jìn)行動(dòng)態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包 括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費(fèi)用為y元,非節(jié)假日門票費(fèi)用y1(元)及節(jié)假日門票費(fèi)用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.![]()
(1)a= , b=;
(2)直接寫出y1、y2與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到神仙居景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)C(1,0),直線y=﹣x+7與兩坐標(biāo)軸分別交于A、B兩點(diǎn),D、E分別是AB,OA上的動(dòng)點(diǎn),當(dāng)△CDE周長最小時(shí),點(diǎn)D坐標(biāo)為 . ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com