【題目】我們已經(jīng)知道,有一個(gè)內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊(如圖①所示).數(shù)學(xué)家已發(fā)現(xiàn)在一個(gè)直角三角形中,兩個(gè)直角邊邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方.如果設(shè)直角三角形的兩條直角邊長(zhǎng)度分別是
和
,斜邊長(zhǎng)度是
,那么可以用數(shù)學(xué)語言表達(dá):
.
![]()
(1)在圖②,若
,
,則
;
(2)觀察圖②,利用面積與代數(shù)恒等式的關(guān)系,試說明
的正確性.其中兩個(gè)相同的直角三角形邊AE、EB在一條直線上;
(3)如圖③所示,折疊長(zhǎng)方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8,BC=10,利用上面的結(jié)論求EF的長(zhǎng).
【答案】(1)12; (2)答案見解析;(3)5
【解析】試題分析:
(1)利用題中所給公式:
,代入
即可解出
的值;
(2)先用“梯形面積計(jì)算公式”計(jì)算出圖②的面積,再分別計(jì)算圖②中三個(gè)三角形的面積并相加得到圖②的面積,利用兩次所求面積相等得到等式,把等式變形即可得到公式:
;
(3)由矩形和折疊的性質(zhì)可得:AF=AD=BC=10,DC=AB=8,EF=DE;在Rt△ABF中,由題中所給結(jié)論可計(jì)算出BF的長(zhǎng),從而可得FC的長(zhǎng);設(shè)EF=
,則DE=
,EC=
,這樣在Rt△EFC中,由題中所給結(jié)論可得關(guān)于
的方程,解方程即可求得EF的長(zhǎng).
![]()
試題解析:
(1)∵
,代入
,
∴
;
(2)∵圖①的面積=
=
,
圖①的面積=S梯形ABCD=
=
,
∴
=
,
∴
,
即
.
(3)由四邊形ABCD是矩形和折疊的性質(zhì)可得,
,
,EF=DE,
由題意可得:在
,即
,解得:
,
又∵
,
∴
,
設(shè)
,則
,
,
∵在Rt△ECF中,
,
∴
,
解得
,即
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)多項(xiàng)式,能因式分解的是( )
A. a2+b2 B. a2-a+2
C. a2+3b D. (x+y)2-4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4.將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長(zhǎng)為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方. ![]()
(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為度;
(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;
(3)在上述直角三角板從圖1旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在
中,AB=20cm,BC=16cm,點(diǎn)D為線段AB的中點(diǎn),動(dòng)點(diǎn)P以2cm/s的速度從B點(diǎn)出發(fā)在射線BC上運(yùn)動(dòng),同時(shí)點(diǎn)Q以
cm/s(
>0且
)的速度從C點(diǎn)出發(fā)在線段CA上運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為
秒。
(1)若AB=AC,P在線段BC上,求當(dāng)
為何值時(shí),能夠使
和
全等?
(2)若
,求出發(fā)幾秒后,
為直角三角形?
(3)若
,當(dāng)
的度數(shù)為多少時(shí),
為等腰三角形?(請(qǐng)直接寫出答案,不必寫出過程)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成三角形的是( 。
A. 5 cm,3 cm,1 cm B. 2 cm,5 cm,8 cm
C. 1 cm,3 cm,4 cm D. 1.5 cm,2 cm,2.5 cm
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com