【題目】如圖,已知OABC的頂點(diǎn)A、C分別在直線x=1和x=4上,O是坐標(biāo)原點(diǎn),則對(duì)角線OB長(zhǎng)的最小值為 . ![]()
【答案】5
【解析】解:過(guò)點(diǎn)B作BD⊥直線x=4,交直線x=4于點(diǎn)D,過(guò)點(diǎn)B作BE⊥x軸,交x軸于點(diǎn)E,直線x=1與OC交于點(diǎn)M,與x軸交于點(diǎn)F,直線x=4與AB交于點(diǎn)N,如圖: ∵四邊形OABC是平行四邊形,
∴∠OAB=∠BCO,OC∥AB,OA=BC,
∵直線x=1與直線x=4均垂直于x軸,
∴AM∥CN,
∴四邊形ANCM是平行四邊形,
∴∠MAN=∠NCM,
∴∠OAF=∠BCD,
∵∠OFA=∠BDC=90°,
∴∠FOA=∠DBC,
在△OAF和△BCD中,
,
∴△OAF≌△BCD.
∴BD=OF=1,
∴OE=4+1=5,
∴OB=
.
由于OE的長(zhǎng)不變,所以當(dāng)BE最小時(shí)(即B點(diǎn)在x軸上),OB取得最小值,最小值為OB=OE=5.
故答案為:5.![]()
過(guò)點(diǎn)B作BD⊥直線x=4,交直線x=4于點(diǎn)D,過(guò)點(diǎn)B作BE⊥x軸,交x軸于點(diǎn)E.則OB=
.由于四邊形OABC是平行四邊形,所以O(shè)A=BC,又由平行四邊形的性質(zhì)可推得∠OAF=∠BCD,則可證明△OAF≌△BCD,所以O(shè)E的長(zhǎng)固定不變,當(dāng)BE最小時(shí),OB取得最小值,從而可求.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)為(
,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y=
(k>0)的圖象與線段OA、AB分別交于點(diǎn)C、D.若AB=3BD,以點(diǎn)C為圓心,CA的
倍的長(zhǎng)為半徑作圓,則該圓與x軸的位置關(guān)系是(填”相離”,“相切”或“相交“). ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,頂點(diǎn)為(1,4)的拋物線
與直線
交于點(diǎn)A(2,2),直線
與
軸交于點(diǎn)B與
軸交于點(diǎn)C.![]()
(1)求
的值及拋物線的解析式
(2)P為拋物線上的點(diǎn),點(diǎn)P關(guān)于直線AB的對(duì)稱(chēng)軸點(diǎn)在
軸上,求點(diǎn)P的坐標(biāo)
(3)點(diǎn)D為
軸上方拋物線上的一點(diǎn),點(diǎn)E為軸上一點(diǎn),以A 、B、E、D為頂點(diǎn)的四邊為平行四邊形時(shí),直接寫(xiě)出點(diǎn)E的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,點(diǎn)G、E、F分別在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過(guò)A、B兩點(diǎn),且與x軸交于另一點(diǎn)C.![]()
(1)求b、c的值;
(2)如圖1,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段BD上,且BE=2ED,連接CE并延長(zhǎng)交拋物線于點(diǎn)M,求點(diǎn)M的坐標(biāo);
(3)將直線AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,如圖2,P為△ACG內(nèi)一點(diǎn),連接PA、PC、PG,分別以AP、AG為邊,在他們的左側(cè)作等邊△APR,等邊△AGQ,連接QR
①求證:PG=RQ;
②求PA+PC+PG的最小值,并求出當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解全校學(xué)生上學(xué)期參加社區(qū)活動(dòng)的情況,學(xué)校隨機(jī)調(diào)查了本校50名學(xué)生參加社區(qū)活動(dòng)的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下: 參加社區(qū)活動(dòng)次數(shù)的頻數(shù)、頻率分布表
活動(dòng)次數(shù)x | 頻數(shù) | 頻率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | 6 | 0.12 |
12<x≤15 | m | b |
15<x≤18 | 2 | n |
根據(jù)以上圖表信息,解答下列問(wèn)題:![]()
(1)表中a= , b=;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整(畫(huà)圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù));
(3)若該校共有1200名學(xué)生,請(qǐng)估計(jì)該校在上學(xué)期參加社區(qū)活動(dòng)超過(guò)6次的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=x2﹣2x﹣3的圖象如圖所示,若線段AB在x軸上,且AB為2
個(gè)單位長(zhǎng)度,以AB為邊作等邊△ABC,使點(diǎn)C落在該函數(shù)y軸右側(cè)的圖象上,則點(diǎn)C的坐標(biāo)為 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過(guò)(﹣1,m2+2m+1)、(0,m2+2m+2)兩點(diǎn),其中m為常數(shù).
(1)求b的值,并用含m的代數(shù)式表示c;
(2)若拋物線y=x2+bx+c與x軸有公共點(diǎn),求m的值;
(3)設(shè)(a,y1)、(a+2,y2)是拋物線y=x2+bx+c上的兩點(diǎn),請(qǐng)比較y2﹣y1與0的大小,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=
(x<0)的圖象經(jīng)過(guò)點(diǎn)A(﹣1,1),過(guò)點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過(guò)點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱(chēng)軸,點(diǎn)B經(jīng)軸對(duì)稱(chēng)變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com