【答案】
分析:(1)把點(diǎn)E,A、B的坐標(biāo)代入函數(shù)表達(dá)式,即可求出a、b、c的值;
(2)根據(jù)C點(diǎn)的坐標(biāo)求出直線(xiàn)CD的解析式,然后結(jié)合圖形設(shè)出K點(diǎn)的坐標(biāo)(t,0),表達(dá)出H點(diǎn)和G點(diǎn)的坐標(biāo),列出HG關(guān)于t的表達(dá)式,根據(jù)二次函數(shù)的性質(zhì)求出最大值;
(3)需要討論解決,①若線(xiàn)段AC是以點(diǎn)A、C,M、N為頂點(diǎn)的平行四邊形的邊,當(dāng)點(diǎn)N在點(diǎn)M的左側(cè)時(shí),MN=3-n;當(dāng)點(diǎn)N在點(diǎn)M的右側(cè)時(shí),MN=n-3,然后根據(jù)已知條件在求n的坐標(biāo)就容易了
②若線(xiàn)段AC是以點(diǎn)A、C,M、N為頂點(diǎn)的平行四邊形的對(duì)角線(xiàn)時(shí),由“點(diǎn)C與點(diǎn)A關(guān)于點(diǎn)B中心對(duì)稱(chēng)”知:點(diǎn)M與點(diǎn)N關(guān)于點(diǎn)B中心對(duì)稱(chēng),取點(diǎn)F關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn)P,則P點(diǎn)坐標(biāo)為(-1,0)
過(guò)P點(diǎn)作NP⊥x軸,交拋物線(xiàn)于點(diǎn)N,結(jié)合已知條件再求n的坐標(biāo)就容易了
解答:
解:(1)設(shè)拋物線(xiàn)的函數(shù)表達(dá)式為y=a(x-1)(x+3)
∵拋物線(xiàn)交y軸于點(diǎn)E(0,-3),將該點(diǎn)坐標(biāo)代入上式,得a=1
∴所求函數(shù)表達(dá)式為y=(x-1)(x+3),
即y=x
2+2x-3;
(2)∵點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn),點(diǎn)A坐標(biāo)(-3,0),點(diǎn)B坐標(biāo)(1,0),
∴點(diǎn)C坐標(biāo)(5,0),
∴將點(diǎn)C坐標(biāo)代入y=-x+m,得m=5,
∴直線(xiàn)CD的函數(shù)表達(dá)式為y=-x+5,
設(shè)K點(diǎn)的坐標(biāo)為(t,0),則H點(diǎn)的坐標(biāo)為(t,-t+5),G點(diǎn)的坐標(biāo)為(t,t
2+2t-3),
∵點(diǎn)K為線(xiàn)段AB上一動(dòng)點(diǎn),
∴-3≤t≤1,
∴HG=(-t+5)-(t
2+2t-3)=-t
2-3t+8=-(t+

)
2+

,
∵-3<-

<1,
∴當(dāng)t=-

時(shí),線(xiàn)段HG的長(zhǎng)度有最大值

;
(3)∵點(diǎn)F是線(xiàn)段BC的中點(diǎn),點(diǎn)B(1,0),點(diǎn)C(5,0),
∴點(diǎn)F的坐標(biāo)為(3,0),
∵直線(xiàn)l過(guò)點(diǎn)F且與y軸平行,
∴直線(xiàn)l的函數(shù)表達(dá)式為x=3,
∵點(diǎn)M在直線(xiàn)l上,點(diǎn)N在拋物線(xiàn)上,
∴設(shè)點(diǎn)M的坐標(biāo)為(3,m),點(diǎn)N的坐標(biāo)為(n,n
2+2n-3),
∵點(diǎn)A(-3,0),點(diǎn)C(5,0),
∴AC=8,
分情況討論:
①若線(xiàn)段AC是以點(diǎn)A、C,M、N為頂點(diǎn)的平行四邊形的邊,則需MN∥AC,且MN=AC=8.
當(dāng)點(diǎn)N在點(diǎn)M的左側(cè)時(shí),MN=3-n,
∴3-n=8,解得n=-5,
∴N點(diǎn)的坐標(biāo)為(-5,12),
當(dāng)點(diǎn)N在點(diǎn)M的右側(cè)時(shí),MN=n-3,
∴n-3=8,
解得n=11,
∴N點(diǎn)的坐標(biāo)為(11,140),
②若線(xiàn)段AC是以點(diǎn)A、C,M、N為頂點(diǎn)的平行四邊形的對(duì)角線(xiàn),由“點(diǎn)C與點(diǎn)A關(guān)于點(diǎn)B中心對(duì)稱(chēng)”知:點(diǎn)M與點(diǎn)N關(guān)于點(diǎn)B中心對(duì)稱(chēng),取點(diǎn)F關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn)P,則P點(diǎn)坐標(biāo)為(-1,0)
過(guò)P點(diǎn)作NP⊥x軸,交拋物線(xiàn)于點(diǎn)N,
將x=-1代入y=x
2+2x-3,得y=-4,
過(guò)點(diǎn)N作直線(xiàn)NM交直線(xiàn)l于點(diǎn)M,
在△BPN和△BFM中,
∠NBP=∠MBF,
BF=BP,
∠BPN=∠BFM=90°,
∴△BPN≌△BFM,
∴NB=MB,
∴四邊形ANCM為平行四邊形,
∴坐標(biāo)(-1,-4)的點(diǎn)N符合條件,
∴當(dāng)N的坐標(biāo)為(-5,12),(11,140),(-1,-4)時(shí),以點(diǎn)A、C、M、N為頂點(diǎn)的四邊形為平行四邊形.
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求二次函數(shù)解析式函數(shù)圖象交點(diǎn)的求法等知識(shí)點(diǎn)、平行四邊形的判定和性質(zhì)等知識(shí)點(diǎn),主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.綜合性強(qiáng),考查學(xué)生分類(lèi)討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.