【題目】已知反比例函數(shù)y=
的圖象經(jīng)過點M(2,1)
(1)求該函數(shù)的表達(dá)式;
(2)當(dāng)2<x<4時,求y的取值范圍(直接寫出結(jié)果).
【答案】
(1)解:∵反比例函數(shù)y=
的圖象經(jīng)過點M(2,1),
∴k=2×1=2,
∴該函數(shù)的表達(dá)式為y=
;
(2)解:∵y=
,
∴x=
,
∵2<x<4,
∴2<
<4,
則2y<2且2<4y,
解得:
<y<1.
【解析】(1)運用待定系數(shù)法,把M坐標(biāo)代入即可;(2)由反比例函數(shù)關(guān)系式,把x代換為y的代數(shù)式表示,求出y的范圍.
【考點精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的性質(zhì)的相關(guān)知識,掌握性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小正方形的邊長都為1,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上.
(1)以點A為旋轉(zhuǎn)中心,將△ABC繞點A順時針旋轉(zhuǎn)90°得到△AB1C1,畫出△AB1C1;
(2)畫出△ABC關(guān)于原點O成中心對稱的△A2B2C2,若點B的坐標(biāo)為(-2,-2),則點B2的坐標(biāo)為_________.
(3)若△A2B2C2可看作是由△AB1C1繞點P順時針旋轉(zhuǎn)90°得到的,則點P的坐標(biāo)為______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=x2﹣2x+1的頂點為P,與y軸的交點為Q,點F(1,
).
(1)求tan∠OPQ的值;
(2)將拋物線C向上平移得到拋物線C′,點Q平移后的對應(yīng)點為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點P關(guān)于直線Q′F的對稱點為K,射線FK與拋物線C′相交于點A,求點A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,CA=CB,在△AED中,DA=DE,點D,E分別在CA,AB上.
(1)如圖①,若∠ACB=∠ADE=90°,則CD與BE的數(shù)量關(guān)系是;![]()
(2)若∠ACB=∠ADE=120°,將△AED繞點A旋轉(zhuǎn)至如圖②所示的位置,則CD與BE的數(shù)量關(guān)系是;,![]()
(3)若∠ACB=∠ADE=2α(0°<α<90°),將△AED繞點A旋轉(zhuǎn)至如圖③所示的位置,探究線段CD與BE的數(shù)量關(guān)系,并加以證明(用含α的式子表示).![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市組織學(xué)術(shù)研討會,需租用客車接送參會人員往返賓館和觀摩地點,客車租賃公司現(xiàn)有
座和
座兩種型號的客車可供租用.
(1)已知
座的客車每輛每天的租金比
座的貴
元,會務(wù)組第一天在這家公司租了
輛
座和
輛
座的客車.一天的租金為
元,求
座和
座的客車每輛每天的租金各是多少元?
(2)由于第二天參會人員發(fā)生了變化,因此會務(wù)紐需重新確定租車方案.
方案1:若只租用
座的客車,會有一輛客車空出
個座位;
方案2:若只租用
座客車,正好坐滿且比只租用
座的客車少用兩輛.
①請計算方案1、2的費用;
②從經(jīng)濟角度考慮,還有方案3嗎?如果你是會務(wù)紐負(fù)責(zé)人,應(yīng)如何確定最終租車方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是
的中線,
,
分別是
和
延長線上的點,且
,連結(jié)
,
.下列說法:①
;②
和
面積相等;③
;④
.其中正確的有( 。
![]()
A.
個B.
個C.
個D.
個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于點E,交PC于點F,連接AF;![]()
(1)判斷AF與⊙O的位置關(guān)系并說明理由.
(2)若⊙O的半徑為4,AF=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小滿的一次作業(yè),老師說小滿的解題過程不完全正確,并在作業(yè)旁寫出了批改.
長跑比賽中,張華跑在前面,在離終點
時他以
的速度向終點沖刺,在他身后
的李明需以多快的速度同時開始沖刺,才能在張華之前到達(dá)終點?
解:設(shè)李明以
的速度開始沖刺,
依題意,得
,
![]()
兩邊同時除以25,得
.
答:李明需以大于
的速度同時開始沖刺,才能在張華之前到達(dá)終點.
請回答:必須添加“根據(jù)實際意義可知,
”這個條件的理由是_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小明家和學(xué)校所在地的簡單地圖,已知OA=2cm,OB=2.5cm,OP=4cm,點C為OP的中點,回答下列問題:
(1)圖中距小明家距離相同的是哪些地方?
(2)學(xué)校、商場和停車場分別在小明家的什么方位?
(3)如果學(xué)校距離小明家400m,那么商場和停車場分別距離小明家多遠(yuǎn)?
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com