【題目】如圖,從點
發(fā)出一束光,經(jīng)x軸反射,過點
,則這束光從點A到點B所經(jīng)過的路徑的長為________.
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會為了解本校學(xué)生每天體育鍛煉所用時間情況,采用問卷的方式對一部分學(xué)生進(jìn)行調(diào)查確定調(diào)查對象時,大家提出以下幾種方案:(A)對各班體育委員進(jìn)行調(diào)査;(B)對某班的全體學(xué)生進(jìn)行調(diào)查;(C)從全校每班隨機抽5名學(xué)生進(jìn)行調(diào)查在問卷調(diào)查時,每位被調(diào)查的學(xué)都選擇了問卷中適合自己的十個時間段,學(xué)生會將收集到的數(shù)據(jù)整理后續(xù)制成如下的統(tǒng)計表:
被調(diào)查的學(xué)生每天體育鍛煉所用時間統(tǒng)計表
組別 | 時間x(小時) | 頻數(shù) |
一 | 0≤x≤0.5 | 15 |
二 | 0.6<x≤1 | 27 |
三 | 1<x≤1.5 | 38 |
四 | 1.5<x≤2 | 13 |
五 | x>2 | 7 |
(1)為了使收集到的數(shù)據(jù)具有代表性,學(xué)生會在確定調(diào)查對象時選擇了方案 (填A、B或C);
(2)被調(diào)查的學(xué)生每天體育鍛煉所用時間的中位數(shù)落在 組;
(3)根據(jù)以上統(tǒng)計結(jié)果,估計該校900名學(xué)生中每天體育鍛煉時間不超過0.5小時的人數(shù),并根據(jù)你計算的結(jié)果提出一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某屆世界杯的小組比賽規(guī)則:四個球隊進(jìn)行單循環(huán)比賽(每兩隊賽一場),勝一場得3分,平一場得1分,負(fù)一場得0分.某小組比賽結(jié)束后,甲、乙、丙、丁四隊分別獲得第一、二、三、四名,各隊的總得分恰好是四個連續(xù)奇數(shù),則與乙打平的球隊是( )
A. 甲 B. 甲與丁 C. 丙 D. 丙與丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB切⊙O于A、B兩點,CD切⊙O于點E,交PA,PB于C,D.若⊙O的半徑為r,△PCD的周長等于3r,則tan∠APB的值是__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線
經(jīng)過A(-3,0)、B(8,0)、C(0,4)三點,點D是拋物線上的動點,連結(jié)AD與y軸相交于點E,連結(jié)AC,CD.
(1)求拋物線所對應(yīng)的函數(shù)表達(dá)式;
(2)當(dāng)AD平分∠CAB時.
①求直線AD所對應(yīng)的函數(shù)表達(dá)式;
②設(shè)P是x軸上的一個動點,若△PAD與△CAD相似,求點P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+4x﹣3與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得到C2,C2與x軸交于B、D兩點.若直線y=kx﹣k與C1、C2共有3個不同的交點,則k的最大值是( 。
![]()
A.
B.2
﹣6C.6+4
D.6﹣4![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線
經(jīng)過坐標(biāo)原點,與
軸的另一個交點為
,且頂點
坐標(biāo)為
.
![]()
(1)求拋物線解析式.
(2)將拋物線向右平移
個單位,所得拋物線與
軸交于
兩點,與原拋物線交于點
,設(shè)
的面積為
,求
關(guān)于![]()
的函數(shù)關(guān)系式.
(3)如圖②,以點
為圈心,以線段
為半徑畫圓,交拋物線
的對稱軸于點
,連結(jié)
,若將拋物線向右平移
個單位后,
點的對應(yīng)點為
,
點的對應(yīng)點為
,且滿足四邊形
為菱形,平移后的拋物線的對稱軸與菱形的對角線
交于點
問:在
軸上是否存在一點
,使得以
,
為頂點的三角形與
相似?若存在,求出F點坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的邊長AD=3,AB=2,∠BAD=120°,E為AB的中點,F在邊BC上,且BF=2FC.AF與DE交于點G,則AG的長為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線
與
軸交于點
,與
軸交于點
,拋物線
經(jīng)過
、
兩點.
求拋物線的解析式;
如圖,點
是直線
上方拋物線上的一動點,當(dāng)
面積最大時,請求出點
的坐標(biāo)和
面積的最大值?
在
的結(jié)論下,過點
作
軸的平行線交直線
于點
,連接
,點
是拋物線對稱軸上的動點,在拋物線上是否存在點
,使得以
、
、
、
為頂點的四邊形是平行四邊形?如果存在,請直接寫出點
的坐標(biāo);如果不存在,請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com