【題目】已知關(guān)于
的一元二次方程
有實(shí)數(shù)根,
為正整數(shù).
(1)求
的值;
(2)當(dāng)此方程有兩個(gè)不為0的整數(shù)根時(shí),將關(guān)于
的二次函數(shù)
的圖象向下平移2個(gè)單位,求平移后的函數(shù)圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)圖象位于
軸左側(cè)的部分沿
軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象G.當(dāng)直線
與圖象G有3個(gè)公共點(diǎn)時(shí),請(qǐng)你直接寫(xiě)出
的取值范圍.
![]()
【答案】(1) 1,2,3;(2)
;(3)
.
【解析】
試題(1)由
求出正整數(shù)解即可.
(2)求出方程有兩個(gè)不為0的整數(shù)根時(shí)的二次函數(shù)解析式,根據(jù)平移的性質(zhì)得到平移后的函數(shù)圖象的解析式.
(3)分直線
與
有一個(gè)交點(diǎn)且與
有兩個(gè)交點(diǎn)和直線
與
有兩個(gè)交點(diǎn)且與
有一個(gè)交點(diǎn)兩種情況求解即可.
(1)∵ 方程有實(shí)數(shù)根,∴
.
∴
,解得
.
∵
為正整數(shù),∴
為1,2,3.
(2)當(dāng)
時(shí),
,方程的兩個(gè)整數(shù)根為6,0;
當(dāng)
時(shí),
,方程無(wú)整數(shù)根;
當(dāng)
時(shí),
,方程的兩個(gè)整數(shù)根為2,1
∴
,原拋物線的解析式為:
.
∴平移后的圖象的解析式為
.
(3)翻折后得到一個(gè)新的圖象G的解析式為
,
聯(lián)立
得
,即
.
由
得
.
∴當(dāng)
或
時(shí),直線
與
有一個(gè)交點(diǎn),當(dāng)
時(shí),直線
與
有兩個(gè)交點(diǎn).
聯(lián)立
得
,即
.
由
得
.
∴當(dāng)
或
時(shí),直線
與
有一個(gè)交點(diǎn),當(dāng)
時(shí),直線
與
有兩個(gè)交點(diǎn).
∴要使直線
與圖象G有3個(gè)公共點(diǎn)即要直線
與
有一個(gè)交點(diǎn)且與
有兩個(gè)交點(diǎn);或直線
與
有兩個(gè)交點(diǎn)且與
有一個(gè)交點(diǎn).
∴
的取值范圍為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過(guò)P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說(shuō)明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出x滿足的條件: .
![]()
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E為BC上一點(diǎn),F為CD上一點(diǎn),且AE=AF.設(shè)△AEF的面積為y,CE=x.
![]()
(第11題)
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)當(dāng)△AEF為正三角形時(shí),求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+3與x軸交于點(diǎn)A(﹣1,0),B(3,0).
(1)求拋物線的解析式;
(2)過(guò)點(diǎn)D(0,
)作x軸的平行線交拋物線于E,F兩點(diǎn),求EF的長(zhǎng);
(3)當(dāng)y≤
時(shí),直接寫(xiě)出x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】希望中學(xué)八年級(jí)學(xué)生開(kāi)展踢毽子活動(dòng),每班派5名學(xué)生參加,按團(tuán)體總分排列名次,在規(guī)定時(shí)間內(nèi)每人踢100個(gè)以上(含100)為優(yōu)秀.下表是成績(jī)較好的甲班和乙班5名學(xué)生的比賽成績(jī)(單位:個(gè))
1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) | 總數(shù) | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)兩班5名學(xué)生踢毽子的總個(gè)數(shù)相等.此時(shí)有學(xué)生建議,可以通過(guò)考查數(shù)據(jù)中的其它信息作為參考.請(qǐng)你回答下列問(wèn)題:
(1)求兩班比賽數(shù)據(jù)的中位數(shù);
(2)計(jì)算兩班比賽數(shù)據(jù)的方差,并比較哪一個(gè);
(3)根據(jù)以上信息,你認(rèn)為應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班?簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖7,已知平行四邊形ABCD的周長(zhǎng)是32cm,AB︰BC=5︰3,AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.
(1)求∠C的度數(shù);
(2)已知DF的長(zhǎng)是關(guān)于
的方程
-
-6=0的一個(gè)根,求該方程的另一個(gè)根.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F
![]()
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)C的坐標(biāo)為(﹣1,﹣3),與x軸交于A(﹣3,0)、B(1,0),根據(jù)圖象回答下列問(wèn)題:
(1)寫(xiě)出方程ax2+bx+c=0的根;
(2)寫(xiě)出不等式ax2+bx+c>0的解集;
(3)若方程ax2+bx+c=k有實(shí)數(shù)根,寫(xiě)出實(shí)數(shù)k的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】臨近端午節(jié),某食品店每天賣(mài)出300只粽子,賣(mài)出一只粽子的利潤(rùn)為1元.經(jīng)調(diào)查發(fā)現(xiàn),零售單價(jià)每降0.1元,每天可多賣(mài)出100只粽子.為了使每天獲得的利潤(rùn)更多,該店決定把零售單價(jià)下降m(0<m<1)元,
(1)零售單價(jià)降價(jià)后,每只利潤(rùn)為 元,該店每天可售出 只粽子.
(2)在不考慮其他因素的條件下,當(dāng)零售單價(jià)下降多少元時(shí),才能使該店每天獲取的利潤(rùn)是420元,且賣(mài)出的粽子更多?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com