【題目】某種水果進價為每千克15元,銷售中發(fā)現(xiàn),銷售單價定為20元時,日銷售量為50千克;當銷售單價每上漲1元,日銷售量就減少5千克.設(shè)銷售單價為
(元),每天的銷售量為
(千克),每天獲利為
(元).
(1)求
與
之間的函數(shù)關(guān)系式;
(2)求
與
之間的函數(shù)關(guān)系式;該水果定價為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果商家規(guī)定這種水果每天的銷售量不低于40千克,求商家每天銷售利潤的最大值是多少元?
【答案】(1)
;(2)該水果售價定為每千克23元時,每天的銷售利潤最大,最大利潤是245元;(3)商家每天銷售利潤的最大值是240元.
【解析】
(1)根據(jù)“銷售單價每上漲1元,日銷售量就減少5千克”即可列出y與x之間的函數(shù)關(guān)系式;
(2)根據(jù)“利潤=每千克的利潤×銷售數(shù)量”即可列出w與x之間的函數(shù)關(guān)系式,將二次函數(shù)解析式轉(zhuǎn)化成頂點式即可得出答案;
(3)先根據(jù)銷售量求出自變量x的取值范圍,再根據(jù)二次函數(shù)的增減性進行解答即可.
解:(1)根據(jù)題意得:
;
(2)根據(jù)題意得:
,
與
之間的函數(shù)關(guān)系式為:
,
,
當
時,
有最大值,最大值為245;
(3)由題意得:
,
解得
.
,
當
時,
有最大值,其最大值為
(元).
答:商家每天銷售利潤的最大值是240元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.
(2)若已確定甲打第一場,再從其余三位同學(xué)中隨機選取一位,求恰好選中乙同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(2,3).雙曲線y=
(x>0)的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE.
(1)直接寫出k的值及點E的坐標;
(2)若點F是OC邊上一點,且FB⊥DE,求直線FB的解析式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的對稱軸為
,與
軸的一個交點在
和
之間,其部分圖像如圖所示,則下列結(jié)論:①點
,
,
是該拋物線上的點,則
;②
;③
(
為任意實數(shù)).其中正確結(jié)論的個數(shù)是( )
![]()
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
的最大值為4,且該拋物線與
軸的交點為
,頂點為
.
(1)求該二次函數(shù)的解析式及點
,
的坐標;
(2)點
是
軸上的動點,
①求
的最大值及對應(yīng)的點
的坐標;
②設(shè)
是
軸上的動點,若線段
與函數(shù)
的圖像只有一個公共點,求
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年5月20日是中國學(xué)生營養(yǎng)日,按時吃早餐是一種健康的飲食習(xí)慣,為了解本校九年級學(xué)生飲食習(xí)慣,某興趣小組在九年級隨機抽取了一部分學(xué)生每天吃早餐的情況,并將統(tǒng)計結(jié)果繪制成如下不完整的統(tǒng)計圖表:
組別 | 調(diào)查結(jié)果 | 所占百分比 |
A | 不吃早餐 | 25% |
B | 偶爾吃早餐 | 12.5% |
C | 經(jīng)常吃早餐 | |
D | 每天吃早餐 | 50% |
![]()
請根據(jù)以上統(tǒng)計圖表,解答下列問題:
本次接受調(diào)查的總?cè)藬?shù)為_____人.
請補全條形統(tǒng)計圖.
該校九年級共有學(xué)生
人,請估計該校九年級學(xué)生每天吃早餐的人數(shù);
請根據(jù)此次調(diào)查的結(jié)果提一條建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線
(
>0)與
軸交于A,B兩點(A點在B點的左邊),與
軸交于點C。
(1)如圖1,若△ABC為直角三角形,求
的值;
(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;
(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交
軸交于點E,若AE:ED=1:4,求
的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線
經(jīng)過
的三個頂點,其中點
,點
,
軸,點
是直線
下方拋物線上的動點.
(1)求拋物線的解析式;
(2)過點
且與
軸平行的直線
與直線
,
分別交于點
,
,當四邊形
的面積最大時,求點
的坐標;
(3)當點
為拋物線的頂點時,在直線
上是否存在點
,使得以
,
,
為頂點的三角形與
相似,若存在,求出點
的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com