科目:初中數(shù)學 來源: 題型:閱讀理解
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:閱讀理解
| BF | CD |
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年遼寧鞍山第26中學九年級上學期第三次月考數(shù)學試卷(解析版) 題型:解答題
閱讀材料
![]()
如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問題:
(1)將圖①中的Rt△DEF繞點O旋轉得到圖②,猜想此時線段BF與CD的數(shù)量關系,并證明你的結論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出
的值(用含α的式子表示出來)
查看答案和解析>>
科目:初中數(shù)學 來源:2012年蘇教版初中數(shù)學七年級下 11.2全等三角形練習卷(解析版) 題型:解答題
閱讀下列材料:
如圖(1)所示,把△ABC沿直線BC移動線段BC那樣長的距離可以變到△ECD的位置;
如圖(2)所示,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;
如圖(3)所示,以點A為中心,把△ABC旋轉180°,可以變到△AED的位置.
像這樣,只改變圖形的位置,而不改變其形狀大小的圖形變換叫做全等變換. 在全等變換中可以清楚地識別全等三角形的對應元素,以上的三種全等變換分別叫平移變換、翻折變換和旋轉變換.
問題:如圖(4),△ABC≌△DEF,B和E、C和F是對應頂點,問通過怎樣的全等變換可以使它們重合,并指出它們相等的邊和角.
![]()
![]()
![]()
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com