【題目】如圖1,矩形
的頂點(diǎn)
、
分別在
軸與
軸上,且點(diǎn)
,點(diǎn)
,點(diǎn)
為矩形
、
兩邊上的一個點(diǎn).
![]()
(1)當(dāng)點(diǎn)
與
重合時,求直線
的函數(shù)解析式;
(2)如圖②,當(dāng)
在
邊上,將矩形沿著
折疊,點(diǎn)
對應(yīng)點(diǎn)
恰落在
邊上,求此時點(diǎn)
的坐標(biāo).
(3)是否存
在使
為等腰三角形?若存在,直接寫出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=
x+2;(2)(
,10);(3)存在, P坐標(biāo)為(6,6)或(6,2
+2)或(6,10-2
).
【解析】
(1)設(shè)直線DP解析式為y=kx+b,將D與C坐標(biāo)代入求出k與b的值,即可確定出解析式;
(2)當(dāng)點(diǎn)B的對應(yīng)點(diǎn)B′恰好落在AC邊上時,根據(jù)勾股定理列方程即可求出此時P坐標(biāo);
(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標(biāo)性質(zhì)求出P坐標(biāo)即可.
解:(1)∵C(6,10),D(0,2),
設(shè)此時直線DP解析式為y=kx+b,
把D(0,2),C(6,10)分別代入,得
,
解得
則此時直線DP解析式為y=
x+2;
(2)設(shè)P(m,10),則PB=PB′=m,如圖2,
∵OB′=OB=10,OA=6,
∴AB′=
=8,
∴B′C=10-8=2,
∵PC=6-m,
∴m2=22+(6-m)2,解得m=![]()
則此時點(diǎn)P的坐標(biāo)是(
,10);
(3)存在,理由為:
![]()
若△BDP為等腰三角形,分三種情況考慮:如圖3,
①當(dāng)BD=BP1=OB-OD=10-2=8,
在Rt△BCP1中,BP1=8,BC=6,
根據(jù)勾股定理得:CP1=
,
∴AP1=10-2
,即P1(6,10-2
);
②當(dāng)BP2=DP2時,此時P2(6,6);
③當(dāng)DB=DP3=8時,
在Rt△DEP3中,DE=6,
根據(jù)勾股定理得:P3E=
,
∴AP3=AE+EP3=2
+2,即P3(6,2
+2),
綜上,滿足題意的P坐標(biāo)為(6,6)或(6,2
+2)或(6,10-2
).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是小穎往表姐家打長途電話的收費(fèi)記錄:
通話時間x(分鐘) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
電話費(fèi)y(元) | 3 | 3 | 3 | 3.6 | 4.2 | 4.8 | 5.4 |
(1)上表的兩個變量中, 是自變量, 是因變量;
(2)寫出y與x之間的關(guān)系式;
(3)若小穎的通話時間是15分鐘,則需要付多少電話費(fèi)?
(4)若小穎有24元錢,則她最多能打多少分鐘電話?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點(diǎn),其中a、b、c滿足關(guān)系式
.
(1)求a、b、c的值;
(2)如果在第二象限內(nèi)有一點(diǎn)P(m,
),請用含m的式子表示四邊形ABOP的面積;
(3)在(2)的條件下,是否存在點(diǎn)P,使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)
、
、
的坐標(biāo)分別為
,
,
.若點(diǎn)
從
點(diǎn)出發(fā),沿
軸正方向以每秒1個單位長度的速度向
點(diǎn)移動,連接
并延長到點(diǎn)
,使
,將線段
繞點(diǎn)
順時針旋轉(zhuǎn)
得到線段
,連接
.若點(diǎn)
在移動的過程中,使
成為直角三角形,則點(diǎn)
的坐標(biāo)是__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛為調(diào)查某校七年級學(xué)生對某一節(jié)目的了解程度,用簡單隨機(jī)抽樣的辦法抽取了該年級的一個班進(jìn)行調(diào)查統(tǒng)計(jì).A:熟悉,B:了解較多,C:一般了解.圖1和圖2是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答以下問題:
(1)求該班共有多少名學(xué)生.
(2)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整.
(3)如果全年級共400名同學(xué),請你估算全年級對這一節(jié)目“了解較多”的學(xué)生人數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、E分別是△ABC邊AB、BC上的點(diǎn),AD=2BD,BE=CE,設(shè)△ADF的面積為S1,△CEF的面積為S2,若S1﹣S2=a,則S△ABC=_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知在△ABC中,∠BAC=40°,BD⊥AC于D,CE⊥AB于E,BD、CE所在直線交于點(diǎn)F,求∠BFC的度數(shù);
(2)在(1)的基礎(chǔ)上,若∠BAC每秒擴(kuò)大10°,且在變化過程中∠ABC與∠ACB始終保持是銳角,經(jīng)過t秒(0<t<14),在∠BFC,∠BAC這兩個角中,當(dāng)一個為另一個的兩倍時,求t的值;
(3)在(2)的基礎(chǔ)上,∠ABD與∠ACE的角平分線交于點(diǎn)G,∠BGC是否為定值,如果是,請直接寫出∠BGC的值,如果不是,請寫出∠BGC是如何變化的.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com