【題目】利用平方根去根號可以構(gòu)造一個整系數(shù)方程.例如:x=
+1時,移項得x﹣1=
,兩邊平方得(x﹣1)2=(
)2 , 所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述構(gòu)造方法,當(dāng)x=
時,可以構(gòu)造出一個整系數(shù)方程是( )
A.4x2+4x+5=0
B.4x2+4x﹣5=0
C.x2+x+1=0
D.x2+x﹣1=0
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B在x軸上,四邊形OACB為平行四邊形,且∠AOB=60°,反比例函數(shù)
(k>0)在第一象限內(nèi)過點(diǎn)A,且與BC交于點(diǎn)F.(1)若OA=10,求反比例函數(shù)的解析式;
(2)若F為BC的中點(diǎn),且S△AOF=24
,求OA長及點(diǎn)C坐標(biāo);
(3)在(2)的條件下,過點(diǎn)F作EF∥OB交OA于點(diǎn)E(如圖2),若點(diǎn)P是直線EF上一個動點(diǎn),連結(jié),PA,PO,問是否存在點(diǎn)P,使得以P,A,O三點(diǎn)構(gòu)成的三角形是直角三角形?若存在,請指出這樣的P點(diǎn)有幾個,并直接寫出其中二個P點(diǎn)坐標(biāo);若不存在,請說明了理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,1925年數(shù)學(xué)家莫倫發(fā)現(xiàn)的世界上第一個完美長方形,它恰能被分割成10個大小不同的正方形.若標(biāo)注①、②的正方形邊長分別為5和6,請你直接寫出以下數(shù)據(jù):
(1)第6個正方形的邊長= ;
(2)第8個正方形的邊長= ;
(3)整個長方形的面積= .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為疏導(dǎo)國慶假期交通,一輛交通巡邏車在南北公路上巡視.某天早上從
地出發(fā),中午到達(dá)
地,行駛記錄如下(規(guī)定向北為正方向,單位:千米):
,
,
,
,
,
,
.
請你解答下列問題:
(1)
地在
地的什么方向?與
地相距多遠(yuǎn)?
(2)巡邏車在巡邏中,離開
地最遠(yuǎn)多少千米?
(3)若巡邏車行駛每千米耗油
升,這半天共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們不妨將橫坐標(biāo),縱坐標(biāo)均為整數(shù)的點(diǎn)稱之為“中國結(jié)”.
(1)求函數(shù)y=
x+2的圖象上所有“中國結(jié)”的坐標(biāo);
(2)若函數(shù)y=
(k≠0,k為常數(shù))的圖象上有且只有兩個“中國結(jié)”,試求出常數(shù)k的值與相應(yīng)“中國結(jié)”的坐標(biāo);
(3)若二次函數(shù)y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k為常數(shù))的圖象與x軸相交得到兩個不同的“中國結(jié)”,試問該函數(shù)的圖象與x軸所圍成的平面圖形中(含邊界),一共包含有多少個“中國結(jié)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC為矩形,點(diǎn)A,C分別在x軸和y軸上,連接AC,點(diǎn)B的坐標(biāo)為(8,6),∠CAO的平分線與y軸相交于點(diǎn)D,則點(diǎn)D的坐標(biāo)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。
![]()
(1)求證:OE=OF;
(2)若BC=
,求AB的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在Rt ΔABC中,∠ABC=900, AB=BC=2.
(1)用尺規(guī)作∠A的平分線AD.
(2)角平分線AD交BC于點(diǎn)D,求BD的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)
(k>0)的圖象經(jīng)過BC邊的中點(diǎn)D(3,1).
(1)求這個反比例函數(shù)的表達(dá)式;
(2)若△ABC與△EFG成中心對稱,且△EFG的邊FG在y軸的正半軸上,點(diǎn)E在這個函數(shù)的圖象上.
①求OF的長;
②連接AF,BE,證明四邊形ABEF是正方形.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com