分析 連接AD,由圓周角定理得出∠AEB=∠ADB=90°,由等腰三角形的性質(zhì)得出BD=CD,由三角形中位線定理得出OD∥AC,CE=2MD=4,求出AE,再由勾股定理求出BE即可.
解答 解:連接AD,如圖所示:![]()
∵以AB為直徑的⊙O與BC交于點(diǎn)D,
∴∠AEB=∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
∵OA=OB,
∴OD∥AC,
∴BM=EM,
∴CE=2MD=4,
∴AE=AC-CE=6,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$;
故答案為:8.
點(diǎn)評 本題考查了圓周角定理、等腰三角形的性質(zhì)、勾股定理、三角形中位線定理;熟練掌握圓周角定理,由三角形中位線定理求出CE是解決問題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com