【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(﹣1,0)、B(4,0)、C(0,2)三點(diǎn).![]()
(1)求該二次函數(shù)的解析式;
(2)點(diǎn)D是該二次函數(shù)圖象上的一點(diǎn),且滿足∠DBA=∠CAO(O是坐標(biāo)原點(diǎn)),求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P是該二次函數(shù)圖象上位于一象限上的一動點(diǎn),連接PA分別交BC,y軸與點(diǎn)E、F,若△PEB、△CEF的面積分別為S1、S2 , 求S1﹣S2的最大值.
【答案】
(1)
解:由題意可得
,解得
,
∴拋物線解析式為y=﹣
x2+
x+2;
(2)
解:當(dāng)點(diǎn)D在x軸上方時,過C作CD∥AB交拋物線于點(diǎn)D,如圖1,
![]()
∵A、B關(guān)于對稱軸對稱,C、D關(guān)于對稱軸對稱,
∴四邊形ABDC為等腰梯形,
∴∠CAO=∠DBA,即點(diǎn)D滿足條件,
∴D(3,2);
當(dāng)點(diǎn)D在x軸下方時,
∵∠DBA=∠CAO,
∴BD∥AC,
∵C(0,2),
∴可設(shè)直線AC解析式為y=kx+2,把A(﹣1,0)代入可求得k=2,
∴直線AC解析式為y=2x+2,
∴可設(shè)直線BD解析式為y=2x+m,把B(4,0)代入可求得m=﹣8,
∴直線BD解析式為y=2x﹣8,
聯(lián)立直線BD和拋物線解析式可得
,解得
或
,
∴D(﹣5,﹣18);
綜上可知滿足條件的點(diǎn)D的坐標(biāo)為(3,2)或(﹣5,﹣18);
(3)
解:過點(diǎn)P作PH∥y軸交直線BC于點(diǎn)H,如圖2,
![]()
設(shè)P(t,﹣
t2+
t+2),
由B、C兩點(diǎn)的坐標(biāo)可求得直線BC的解析式為y=﹣
x+2,
∴H(t,﹣
t+2),
∴PH=yP﹣yH=﹣
t2+
t+2﹣(﹣
t+2)=﹣
t2+2t,
設(shè)直線AP的解析式為y=px+q,
∴
,解得
,
∴直線AP的解析式為y=(﹣
t+2)(x+1),令x=0可得y=2﹣
t,
∴F(0,2﹣
t),
∴CF=2﹣(2﹣
t)=
t,
聯(lián)立直線AP和直線BC解析式可得
,解得x=
,即E點(diǎn)的橫坐標(biāo)為
,
∴S1=
PH(xB﹣xE)=
(﹣
t2+2t)(5﹣
),S2=
,
∴S1﹣S2=
(﹣
t2+2t)(5﹣
)﹣
=﹣
t2+5t=﹣
(t﹣
)2+
,
∴當(dāng)t=
時,有S1﹣S2有最大值,最大值為
.
【解析】(1)由A、B、C三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)當(dāng)點(diǎn)D在x軸上方時,則可知當(dāng)CD∥AB時,滿足條件,由對稱性可求得D點(diǎn)坐標(biāo);當(dāng)點(diǎn)D在x軸下方時,可證得BD∥AC,利用AC的解析式可求得直線BD的解析式,再聯(lián)立直線BD和拋物線的解析式可求得D點(diǎn)坐標(biāo);(3)過點(diǎn)P作PH∥y軸交直線BC于點(diǎn)H,可設(shè)出P點(diǎn)坐標(biāo),從而可表示出PH的長,可表示出△PEB的面積,進(jìn)一步可表示出直線AP的解析式,可求得F點(diǎn)的坐標(biāo),聯(lián)立直線BC和PA的解析式,可表示出E點(diǎn)橫坐標(biāo),從而可表示出△CEF的面積,再利用二次函數(shù)的性質(zhì)可求得S1﹣S2的最大值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,D是AC上一點(diǎn),AE⊥BD,交BD的延長線于E,CF⊥BD于F.
(1)求證:CF=BE;
(2)若BD=2AE,求證:∠EAD=∠ABE.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表列出了國外幾個城市與首都北京的時差(帶正號的表示同一時刻比北京時間早的時數(shù)),如北京時間的上午10:00時,東京時間的10點(diǎn)已過去了1小時,現(xiàn)在已是10+1=11:00.
![]()
(1)如果現(xiàn)在是北京時間8:00,那么現(xiàn)在的紐約時間是多少;
(2)此時(北京時間8:00)小明想給遠(yuǎn)在巴黎姑媽打電話,你認(rèn)為合適嗎?為什么?
(3)如果現(xiàn)在是芝加哥時間上午6:00,那么現(xiàn)在北京時間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由半圓和長方形構(gòu)成,長方形的長BC為8m,寬AB為1m,該隧道內(nèi)設(shè)雙向行駛的車道(共有2條車道),若現(xiàn)有一輛貨運(yùn)卡車高4m,寬2.3m。則這輛貨運(yùn)卡車能否通過該隧道?說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
![]()
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點(diǎn)C在線段AB上,且AC=5cm,BC=3cm,點(diǎn)M,N分別是AC,BC的中點(diǎn),求線段MN的長度.
(2)若點(diǎn)C是線段AB上任意一點(diǎn),且AC=a,BC=b, 點(diǎn)M、N分別是,AC,BC的中點(diǎn),請直接寫出線段MN的長度(用含a,b的代數(shù)式表示)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個直角三角板中30°的銳角頂點(diǎn)與另一個直角三角板的直角頂點(diǎn)疊放一起.(注:∠ACB與∠DEC是直角,∠A=45°,∠DEC=30°).
(1)如圖①,若點(diǎn)C、B、D在一條直線上,求∠ACE的度數(shù);
(2)如圖②,將直角三角板CDE繞點(diǎn)c逆時針方向轉(zhuǎn)動到某個位置,若恰好平分∠DCE,求∠BCD的度數(shù);
(3)如圖③若∠DEC始終在∠ACB的內(nèi)部,分別作射線CM平分∠BCD,射線CN平分∠ACE.如果三角板DCE在∠ACB內(nèi)繞點(diǎn)C任意轉(zhuǎn)動,∠MCN的度數(shù)是否發(fā)生變化?如果不變,求出它的度數(shù),如果變化,說明理由。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DBE中,BC=BE,還需要添加兩個條件才能使△ABC≌△DBE,則不能添加的一組條件是( )
![]()
A. AC=DE,∠C=∠E B. BD=AB,AC=DE C. AB=DB,∠A=∠D D. ∠C=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線
經(jīng)過點(diǎn)
,
.
![]()
(1)求直線
的解析式;
(2)若直線
與直線
相交于點(diǎn)
,求點(diǎn)
的坐標(biāo);
(3)根據(jù)圖象,直接寫出關(guān)于
的不等式
的解集.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com