欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.如圖,平行四邊形ABCD中,E是CD的延長線上一點(diǎn),BE與AD交于點(diǎn)F,若ED:DC=2:3,△DEF的面積為8,則平行四邊形ABCD的面積為60.

分析 根據(jù)平行四邊形的性質(zhì)得出AB=DC,AD∥BC,AB∥CD,證出△DEF∽△CEB,△DEF∽△ABF,求出△CEB的面積為50,△ABF的面積為18,即可求出答案.

解答 解:∵四邊形ABCD是平行四邊形,
∴AB=DC,AD∥BC,AB∥CD,
∵ED:DC=2:3,
∴ED:CE=2:5,ED:AB=2:3,
∵AD∥BC,AB∥CD,
∴△DEF∽△CEB,△DEF∽△ABF,
∴$\frac{{S}_{△DEF}}{{S}_{△CEB}}$=($\frac{DE}{CE}$)2=($\frac{2}{5}$)2=$\frac{4}{25}$,$\frac{{S}_{△DEF}}{{S}_{△ABF}}$=($\frac{DE}{AB}$)2=($\frac{2}{3}$)2=$\frac{4}{9}$
∵△DEF的面積為8,
∴△CEB的面積為50,△ABF的面積為18,
∴四邊形DFBC的面積為50-8=42,
∴平行四邊形ABCD的面積為42+18=60,
故答案為:60.

點(diǎn)評 本題考查了平行四邊形的性質(zhì),相似三角形的性質(zhì)和判定的應(yīng)用,能求出△CEB和△ABF的面積是解此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.約分:(1)$\frac{2a{xy}^{2}}{6{ax}^{2}y}$=$\frac{y}{3x}$;(2)$\frac{{x}^{4}{-y}^{4}}{{x}^{4}-{2x}^{2}y^{2}{+y}^{4}}$=$\frac{{x}^{2}+{y}^{2}}{{x}^{2}-{y}^{2}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,∠ACB=90°,AC=BC,延長AC到點(diǎn)D,使CD=CE.求證:
(1)△ACE≌△BCD;
(2)AE⊥BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.下列有理式中是分式的是( 。
A.$\frac{1}{5}(x+y)$B.$\frac{a}{3}$C.$\frac{ab}{2}+\frac{1}{c}$D.$\frac{x}{2}+y$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.先化簡,再求值:$\frac{{x}^{2}-1}{2{x}^{2}+4x}$÷(x-2+$\frac{3}{x+2}$),其中x=($\sqrt{3+1}$)0+($\frac{1}{2}$)-1cos60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.計(jì)算:
(1)($\sqrt{3}-\sqrt{5}$)($\sqrt{3}+\sqrt{5}$)-($\sqrt{10}-\sqrt{2}$)2
(2)$\sqrt{18}$$\sqrt{\frac{9}{2}}$-$\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}$$+(\sqrt{3}-2)^{0}$$+\sqrt{(1-\sqrt{2})^{2}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.先化簡($\frac{3}{x-1}$-x-1)÷$\frac{x-2}{{x}^{2}-2x+1}$,再選一個(gè)你喜歡的x值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.若(m+1)x|m|+2>0是關(guān)于x的一元一次不等式,則m=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.若m>n,下列不等式不一定成立的是( 。
A.m+2>n+2B.2m>2nC.-2m<-2nD.m2>n2

查看答案和解析>>

同步練習(xí)冊答案