【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn) y=
x2﹣
x﹣
與x軸交于A(yíng)、B、兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)判斷△ABC形狀,并說(shuō)明理由.
(2)在拋物線(xiàn)第四象限上有一點(diǎn),它關(guān)于x軸的對(duì)稱(chēng)點(diǎn)記為點(diǎn)P,點(diǎn)M是直線(xiàn)BC上的一動(dòng)點(diǎn),當(dāng)△PBC的面積最大時(shí),求PM+
MC的最小值;
(3)如圖2,點(diǎn)K為拋物線(xiàn)的頂點(diǎn),點(diǎn)D在拋物線(xiàn)對(duì)稱(chēng)軸上且縱坐標(biāo)為
,對(duì)稱(chēng)軸右側(cè)的拋物線(xiàn)上有一動(dòng)點(diǎn)E,過(guò)點(diǎn)E作EH∥CK,交對(duì)稱(chēng)軸于點(diǎn)H,延長(zhǎng)HE至點(diǎn)F,使得EF=
,在平面內(nèi)找一點(diǎn)Q,使得以點(diǎn)F、H、D、Q為頂點(diǎn)的四邊形是軸對(duì)稱(chēng)圖形,且過(guò)點(diǎn)Q的對(duì)角線(xiàn)所在的直線(xiàn) 是對(duì)稱(chēng)軸,請(qǐng)問(wèn)是否存在這樣的點(diǎn)Q,若存在請(qǐng)直接寫(xiě)出點(diǎn)E的橫坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
![]()
【答案】(1)結(jié)論:△ABC是直角三角形(2)
(3)存在.滿(mǎn)足條件的點(diǎn)E的橫坐標(biāo)為
或
或
或![]()
【解析】試題分析:(1)由△AOC∽△COB,推出∠ACO=∠OBC,由∠OBC+∠OCB=90°,推出∠ACO+∠BCO=90°,推出∠ACB=90°,得出結(jié)論;
(2)如圖1中,設(shè)第四象限拋物線(xiàn)上一點(diǎn)N(m,
x2﹣
x﹣
),點(diǎn)N關(guān)于x軸的對(duì)稱(chēng)點(diǎn)P(m,-
x2+
x+
),作過(guò)B、C分別作y軸、x軸的平行線(xiàn)交于點(diǎn)G,連接PG,可得S△PBC=S△PCG+S△PBG﹣S△BCG,由此可得△PBC面積最大時(shí)的點(diǎn)P的坐標(biāo),如圖2,作ME⊥CG于點(diǎn)M,由△CEM∽△BOC,根據(jù)對(duì)應(yīng)邊成比例,得出PM+
CM=PM+ME,根據(jù)垂線(xiàn)段最短可知,當(dāng)PE⊥CG時(shí),PM+ME最短,由此即可解決;
(3)分三種情況討論,①如圖3,當(dāng)DH=HF,HQ平分∠DHF時(shí),以嗲F、H、D、Q為頂點(diǎn)的四邊形是軸對(duì)稱(chēng)圖形,且過(guò)點(diǎn)Q的對(duì)角線(xiàn)所在的直線(xiàn)是對(duì)稱(chēng)軸,②如圖4,當(dāng)DH=HF,HQ平分∠DHF時(shí),以點(diǎn)F、H、D、Q為頂點(diǎn)的四邊形是軸對(duì)稱(chēng)圖形,且過(guò)點(diǎn)Q的對(duì)角線(xiàn)所在的直線(xiàn)是對(duì)稱(chēng)軸,③如圖5,當(dāng)DH=DF,DQ平分∠HDF時(shí),以點(diǎn)F、H、D、Q為頂點(diǎn)的四邊形是軸對(duì)稱(chēng)圖形,且過(guò)點(diǎn)Q的對(duì)角線(xiàn)所在的直線(xiàn)是對(duì)稱(chēng)軸,分別求解即可.
試題解析:(1)結(jié)論:△ABC是直角三角形.理由如下,
對(duì)于拋物線(xiàn) y=
x2﹣
x﹣
,令y=0得
x2﹣
x﹣
=0,解得x=﹣
或3
;令x=0得y=﹣
,
∴A(﹣
,0),C(0,﹣
),B(3
,0),
∴OA=
,OC=
,OB=3
,
∴
=
=
,∵∠AOC=∠BOC,
∴△AOC∽△COB,
∴∠ACO=∠OBC,
∵∠OBC+∠OCB=90°,
∴∠ACO+∠BCO=90°,
∴∠ACB=90°.
(也可以求出AC、BC、AB利用勾股定理的逆定理證明).
(2)如圖1中,設(shè)第四象限拋物線(xiàn)上一點(diǎn)N(m,
m2﹣
m﹣
),點(diǎn)N關(guān)于x軸的對(duì)稱(chēng)點(diǎn)P(m,﹣
m2+
m+
),作過(guò)B、C分別作y軸,x軸的平行線(xiàn)交于點(diǎn)G,連接PG.
![]()
∵G(3
,﹣
),
∴S△PBC=S△PCG+S△PBG﹣S△BCG=
×
×(﹣
m2+
m+2
)+
×
(3
﹣m)﹣
×
×
=﹣
(m﹣
)2+
.
∵﹣
<0,
∴當(dāng)m=
時(shí),△PBC的面積最大,
此時(shí)P(
,
),
如圖2中,作ME⊥CG于M.
![]()
∵CG∥OB,
∴∠OBC=∠ECM,∵∠BOC=∠CEM,
∴△CEM∽△BOC,
∵OC:OB:BC=1:3:
,
∴EM:CE:CM=1:3:
,
∴EM=
CM,
∴PM+
CM=PM+ME,
∴根據(jù)垂線(xiàn)段最短可知,當(dāng)PE⊥CG時(shí),PM+ME最短,
∴PM+
MC的最小值為
+
=
.
(3)存在.理由如下,
①如圖3中,當(dāng)DH=HF,HQ平分∠DHF時(shí),以點(diǎn)F、H、D、Q為頂點(diǎn)的四邊形是軸對(duì)稱(chēng)圖形,且過(guò)點(diǎn)Q的對(duì)角線(xiàn)所在的直線(xiàn) 是對(duì)稱(chēng)軸.
![]()
作CG⊥HK于G,PH∥x軸,EP⊥PH于P.
∵FH∥CK,K(![]()
,﹣![]()
),
易知CG:GK:CK=3:4:5,
由△EPH∽△KGC,得PH:PE:EH=3:4:5,設(shè)E((n,
n2﹣
n﹣
),則HE=
(n﹣![]()
),PE=
(n﹣![]()
),
∵DH=HF,
∴
+[﹣
n2+
n+
﹣
(n﹣![]()
)]=
(n﹣![]()
)+![]()
,
解得n=
或
(舍棄).
②如圖4中,當(dāng)DH=HF,HQ平分∠DHF時(shí),以點(diǎn)F、H、D、Q為頂點(diǎn)的四邊形是軸對(duì)稱(chēng)圖形,且過(guò)點(diǎn)Q的對(duì)角線(xiàn)所在的直線(xiàn) 是對(duì)稱(chēng)軸.
![]()
同法可得[
n2﹣
n﹣
+
(n﹣![]()
)]﹣
=
(n﹣![]()
)+![]()
,
解得n=
+
或
﹣
(舍棄).
③如圖5中,當(dāng)DH=DF,DQ平分∠HDF時(shí),以點(diǎn)F、H、D、Q為頂點(diǎn)的四邊形是軸對(duì)稱(chēng)圖形,且過(guò)點(diǎn)Q的對(duì)角線(xiàn)所在的直線(xiàn) 是對(duì)稱(chēng)軸.
![]()
設(shè)DQ交HF于M.由△DHM∽△CKG,可知HM:DH=4:5,
[
(n﹣![]()
)+![]()
]:[
n2﹣
n﹣
+
(n﹣![]()
)﹣
]=4:5,
解得n=
+
或=
﹣
(舍棄),
④如圖6中,當(dāng)FQ平分∠DFH時(shí),滿(mǎn)足條件,此時(shí)
=
.
![]()
∴5×
[
n2﹣
n﹣
﹣
+
(n﹣![]()
)]=4[
(n﹣![]()
)+![]()
],
解得:n=
或
(舍棄)
綜上所,滿(mǎn)足條件的點(diǎn)E的橫坐標(biāo)為
或
+
或
+
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D在A(yíng)B的延長(zhǎng)線(xiàn)上,且∠BCD=∠A.
(1)求證:CD是⊙O的切線(xiàn);
(2)若⊙O的半徑為3,CD=4,求BD的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓柱形玻璃杯,高為
,底面周長(zhǎng)為
,在杯內(nèi)離杯底
的點(diǎn)
處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿
與蜂蜜相對(duì)的點(diǎn)
處,則螞蟻到達(dá)蜂蜜的最短距離為( )
.
![]()
A. 15B.
C. 12D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=2x+6交x軸于A,交y軸于B.
![]()
(1)直接寫(xiě)出A( , ),B( , );
(2)如圖1,點(diǎn)E為直線(xiàn)y=x+2上一點(diǎn),點(diǎn)F為直線(xiàn)y=
x上一點(diǎn),若以A,B,E,F為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)E,F的坐標(biāo)
(3)如圖2,點(diǎn)C(m,n)為線(xiàn)段AB上一動(dòng)點(diǎn),D(﹣7m,0)在x軸上,連接CD,點(diǎn)M為CD的中點(diǎn),求點(diǎn)M的縱坐標(biāo)y和橫坐標(biāo)x之間的函數(shù)關(guān)系式,并直接寫(xiě)出在點(diǎn)C移動(dòng)過(guò)程中點(diǎn)M的運(yùn)動(dòng)路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠(chǎng)生產(chǎn)一種夾克和T恤,夾克每件定價(jià)120元,T恤每件定價(jià)60元.廠(chǎng)方在開(kāi)展促銷(xiāo)活動(dòng)期間,向客戶(hù)提供兩種優(yōu)惠方案:①買(mǎi)一件夾克送一件T恤;②夾克和T恤都按定價(jià)的80%付款.現(xiàn)某客戶(hù)要到該服裝廠(chǎng)購(gòu)買(mǎi)夾克30件,T恤
件(
>30).
(1)若該客戶(hù)按方案①購(gòu)買(mǎi),需付款 元(用含x的代數(shù)式表示);
若該客戶(hù)按方案②購(gòu)買(mǎi),需付款 元(用含x的代數(shù)式表示);
(2)若
=40,通過(guò)計(jì)算說(shuō)明按方案①、方案②哪種方案購(gòu)買(mǎi)較為合算?
(3)若兩種優(yōu)惠方案可同時(shí)使用,當(dāng)
=40時(shí),你能給出一種更為省錢(qián)的購(gòu)買(mǎi)方案嗎?試寫(xiě)出你的購(gòu)買(mǎi)方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將代數(shù)式中的任意兩個(gè)字母交換,代數(shù)式不變,則稱(chēng)這個(gè)代數(shù)式為完全對(duì)稱(chēng)式,如
就是完全對(duì)稱(chēng)式(代數(shù)式中
換成b,b換成
,代數(shù)式保持不變).下列三個(gè)代數(shù)式:①
;②
;③
.其中是完全對(duì)稱(chēng)式的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)超市以同樣的價(jià)格出售同樣的商品,但各自推出不同的優(yōu)惠方案:在甲超市累計(jì)購(gòu)物超過(guò)100元后,超過(guò)100元的部分按80%收費(fèi);在乙超市累計(jì)購(gòu)物超過(guò)50元后,超過(guò)50元的部分按90%收費(fèi).設(shè)小明在同一超市累計(jì)購(gòu)物
元,他在甲超市購(gòu)物實(shí)際付費(fèi)
(元).在乙超市購(gòu)物實(shí)際付費(fèi)
(元).
(1)分別求出
,
與
的函數(shù)關(guān)系式.
(2)隨著小明累計(jì)購(gòu)物金額的變化,分析他在哪家超市購(gòu)物更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩組工人同時(shí)加工某種零件,乙組工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備
后,乙組的工作效率是原來(lái)的2倍.兩組各自加工零件的數(shù)量
(件)與時(shí)間
(時(shí))的函數(shù)圖
象如圖所示.
(1)求甲組加工零件的數(shù)量y與時(shí)間
之間的函數(shù)關(guān)系式.(2分)
(2)求乙組加工零件總量
的值.(3分)
(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時(shí)間忽略不計(jì),求經(jīng)過(guò)多長(zhǎng)時(shí)間恰好裝滿(mǎn)第1箱?再經(jīng)過(guò)多長(zhǎng)時(shí)間恰好裝滿(mǎn)第2箱?(5分)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線(xiàn)交BC于點(diǎn)M,則DM的長(zhǎng)為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com