⑴證明三角形中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半;
要求:根據(jù)圖1寫出定理的已
知、求證、證明;在證明過程中,至少有兩外寫
出推理的依據(jù)(“已知”除外)
⑵如圖2,在□ABCD中,對角線交點為O,A1、B1、C1、D1分別是OA、OB、OC、OD的中點,A2、B2、C2、D2分別是OA1、OB1、OC1、OD1的中點,…以此類推
若在□ABCD的周長為1,直接用算式表示各四邊形的周長之
和l;
⑶借助圖形3反映的規(guī)律,猜猜l可能是多少?
![]()
科目:初中數(shù)學 來源: 題型:
如圖,△ABC中,AB=AC=18,BC=12,正方形DEFG的頂點E,F(xiàn)在△ABC內(nèi),頂點D,G分別在AB,AC上,AD=AG,DG=6,則點F到BC的距離為【 】
![]()
A. 1 B. 2 C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在邊為的1正方形組成的網(wǎng)格中,建立平面直角坐標系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),將△ABC沿著x軸翻折后,得到△DEF,點B的對稱點是點E,求過點E的反比例函數(shù)解析式,并寫出第三象限內(nèi)該反比例函數(shù)圖象所經(jīng)過的所有格點的坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
關(guān)于x的方程m(x+h)2+k=0(m,h,k均為常數(shù),m≠0)的解是x1=﹣3,x2=2,則方程m(x+h﹣3)2+k=0的解是( )
A. x1=﹣6,x2=﹣1 B. x1=0,x2=5 C. x1=﹣3,x2=5 D. x1=﹣6,x2=2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3.0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求
出點M的坐標;如果不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com