操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(不包括射線的端點).如圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
研究:![]()
(1)三角板繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合如圖2加以證明;
(2)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長;若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM∶MB=1∶3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合如圖4加以證明.
(1)PD=PE;(2)1,
,
;(3)ME="3MD"
解析試題分析:(1)連接PC,通過證明△PCD≌△PBE,得出PD=PE;
(2)分為點C與點E重合、CE=
、CE=1、E在CB的延長線上四種情況進行說明;
(3)作MH⊥CB,MF⊥AC,構(gòu)造相似三角形△MDF和△MHE,然后利用對應(yīng)邊成比例,就可以求出MD和ME之間的數(shù)量關(guān)系.
(1)連接PC,![]()
因為△ABC是等腰直角三角形,P是AB的中點,
∴CP=PB,CP⊥AB,∠ACP=
∠ACB=45°.
∴∠ACP=∠B=45°.
又∵∠DPC+∠CPE=∠BPE+∠CPE,
∴∠DPC=∠BPE.
∴△PCD≌△PBE.
∴PD=PE;
(2)△PBE是等腰三角形,
①當PE=PB時,此時點C與點E重合,CE=0;
②當BP=BE時,E在線段BC上,CE=
;E在CB的延長線上,CE=
;
③當EP=EB時,CE=1;
(3)過點M作MF⊥AC,MH⊥BC
∵∠C=90°,
∴四邊形CFMH是矩形即∠FMH=90°,MF=CH.![]()
∵∠DMF+∠DMH=∠DMH+∠EMH=90°,
∴∠DMF=∠EMH,
∵∠MFD=∠MHE=90°,
∴△MFD∽△MHE,![]()
考點:旋轉(zhuǎn)問題的綜合題
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
科目:初中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com