【題目】圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2.當傘收緊時,點P與點A重合;當傘慢慢撐開時,動點P由A向B移動;當點P到達點B時,傘張得最開.已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米.
![]()
﹙1﹚求AP長的取值范圍;
﹙2﹚在陽光垂直照射下,傘張得最開時,求傘下的陰影﹙假定為圓面﹚面積S﹙結果保留π﹚.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C、D在線段AB上,△PCD是等邊三角形,且△ACP∽△PDB.
(1)求∠APB的大。
(2)說明線段AC、CD、BD之間的數(shù)量關系.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).
(1)求拋物線的解析式;
(2)如圖,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在線段AB上找一點C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BC·AB=AC2,那么稱線段AB被點C黃金分割。
![]()
為了增加美感,黃金分割經常被應用在繪畫、雕塑、音樂、建筑等藝術領域。如圖2,在我國古代紫禁城的中軸線上,太和門位于太和殿與內金水橋之間靠近內金水橋的一側,三個建筑的位置關系滿足黃金分割,已知太和殿到內金水橋的距離約為100丈,求太和門到太和殿之間的距離(
的近似值取2.2)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE。
①∠AEB的度數(shù)為__________;
②線段AD,BE之間的數(shù)量關系為__________;
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關系,并證明你的結論;
![]()
(3)如圖3,在正方形ABCD中,CD=
,若點P滿足PD=1,且∠BPD=90°,請直接寫出點A到BP的距離為________________________________。
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列這些美麗的圖案都是在“幾何畫板”軟件中利用旋轉的知識在一個圖案的基礎上加工而成的,每一個圖案都可以看作是它的“基本圖案”繞著它的旋轉中心旋轉得來的,旋轉的角度正確的為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,-2).
(1)求直線AB的解析式;
(2)若點C在直線AB上,且
,求點C的坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過點(﹣2,0),對稱軸為直線x=1.有以下結論:
①abc>0;
②8a+c>0;
③若A(x1,m),B(x2,m)是拋物線上的兩點,當x=x1+x2時,y=c;
④點M,N是拋物線與x軸的兩個交點,若在x軸下方的拋物線上存在一點P,使得PM⊥PN,則a的取值范圍為a≥1;
⑤若方程a(x+2)(4﹣x)=﹣2的兩根為x1,x2,且x1<x2,則﹣2≤x1<x2<4.
其中結論正確的有( 。
![]()
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點G,H分別是正六邊形ABCDEF的邊BC,CD上的點,且BG=CH,AG交BH于點P.
(1)求證:△ABG≌△BCH;
(2)求∠APH的度數(shù).
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com