| 閱讀下面的問(wèn)題,并解答題(1)和題(2)。 | ||
(1)如圖②,P是邊長(zhǎng)為2的正方形ABCD邊CD上任意一點(diǎn),且PE⊥DB于E,PF⊥CA于F,求PE+PF的值。 | ||
|
| ||
| (2)如圖③,在△ABC中,∠A=90°,D是AB上一點(diǎn),且BD=CD,過(guò)BC上任一點(diǎn)P做PE⊥AB于E,PF⊥DC于F,已知AD:BD=1:3,BC= 4 | ||
|
|
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
| b |
| sinB |
| c |
| sinC |
| AD |
| AB |
| AD |
| AC |
| b |
| sinB |
| c |
| sinC |
| 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
閱讀下面的問(wèn)題,并解答題(1)和題(2)。
如圖①所示,P是等腰△ABC的底邊BC上任一點(diǎn),PE⊥AB于E,PF⊥AC于F,BH是腰AC上的高,求證:PE+PF=BH。
![]()
,
![]()
因?yàn)锳B=AC,所以BH=PE+PF
按照上述證法或用其它方法證明下面兩題:
(1)如圖②,P是邊長(zhǎng)為2的正方形ABCD邊CD上任意一點(diǎn),且PE⊥DB于E,PF⊥CA于F,求PE+PF的值。
![]()
(2)如圖③,在△ABC中,∠A=90°,D是AB上一點(diǎn),且BD=CD,過(guò)BC
![]()
求PE+PF的值
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(32)(解析版) 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com