如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.
![]()
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
詳見試題解析.
【解析】
試題分析:
(1)根據(jù)角平分線的性質(zhì)和全等三角形的判定方法證明△ABD≌△CBD,由全等三角形的性質(zhì)即可得到:∠ADB=∠CDB;
(2)若∠ADC=90°,由(1)中的條件可得四邊形MPND是矩形,再根據(jù)兩邊相等的四邊形是正方形即可證明四邊形MPND是正方形.
試題解析:
(1)∵BD平分∠ABC,點P在BD上,PM⊥AD,PN⊥CD
∴PM=PN
∵PD=PD Rt△PMD≌Rt△PND
∴∠ADB=∠CDB (5分)
(2)∵PM⊥AD,PN⊥CD
∴∠PMD=∠PND=90°
∵∠ADC=90°,
∴四邊形MPND是矩形
∵PM=PN
∴四邊形MPND是正方形 (10分)
考點:1.正方形的判定;2.全等三角形的判定與性質(zhì).
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com