解:(1)將A點橫坐標(biāo)為1、B點橫坐標(biāo)為4分別代入雙曲線

中,可得A(1,4),B(4,1);
再將A、B兩點分別代入一次函數(shù)y=kx+b中,解得:k=-1,b=5;
∴一次函數(shù)的解析式為:y=-x+5;
(2)從兩個函數(shù)圖象的交點看,x的取值在兩個交點A、B之間時,一次函數(shù)的函數(shù)值才大于反比例函數(shù)的函數(shù)值,
∴1<x<4或x<0;
(3)①0<t<1時,S=

t[

-(-t+5)]=

,
②1<t<4時,S=

t[(-t+5)-

]=

,
③4<t時,S=

t[

-(-t+5)]=

.
分析:(1)反比例函數(shù)的解析式已知,把A、B坐標(biāo)代入就能求得完整的坐標(biāo),代入一次函數(shù)解析式即可求得k,b的值;
(2)實際是求一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時,x的取值.應(yīng)從兩個函數(shù)的交點入手觀察;
(3)應(yīng)從兩個交點的橫坐標(biāo)入手,分3種情況表示出△OMN的面積進行探討.
點評:求一次函數(shù)的解析式需知道它上面的兩個點的坐標(biāo);比較兩個函數(shù)值的大小,應(yīng)從交點坐標(biāo)的入手觀察.