【題目】如圖,正方形
的邊
在正方形
的邊
上,連接
,
,
![]()
(1)求證:
;
(2)若
平分
,
,
,求
的值.
(3)連接
,若
,求
與
面積的和.
【答案】(1)見(jiàn)解析;(2)
;(3)
與
面積的和為18.
【解析】
(1)由正方形的性質(zhì)可證明
,可求得
;
(2)作
于
,由角平分線的性質(zhì)得出
,
,證出
和
是等腰直角三角形,得出
,
,再通過(guò)
,得出
,因此
,得出
,即可得出答案;
(3)設(shè)正方形
的邊長(zhǎng)為x,正方形
的邊長(zhǎng)為
,在
中,由勾股定理得出
,由三角形面積得出
的面積
,
面積
,即可得出
與
面積的和.
解:(1)證明:
四邊形
和四邊形
為正方形,
,
,
,
在
和
中,
,
,
;
(2)解:作
于
,如圖1所示:
![]()
則
,
平分
,
,
,
四邊形
和四邊形
為正方形,
,
,
,
和
是等腰直角三角形,
,
,
在
和
中,
,
,
,
,
,
,
;
(3)解:如圖2所示:
![]()
設(shè)正方形
的邊長(zhǎng)為x,正方形
的邊長(zhǎng)為
,
在
中,
,
,即
,
的面積
,
面積
,
與
面積的和
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=-2x+2的圖象.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)求四邊形PQOB的面積;
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚(yú)島自古就是中國(guó)的!2017年5月18日,中國(guó)海警2305,2308,2166,33115艦船隊(duì)在中國(guó)的釣魚(yú)島領(lǐng)海內(nèi)巡航,如圖,我軍以30km/h的速度在釣魚(yú)島A附近進(jìn)行合法巡邏,當(dāng)巡邏艦行駛到B處時(shí),戰(zhàn)士發(fā)現(xiàn)A在他的東北方向,巡邏艦繼續(xù)向北航行40分鐘后到達(dá)點(diǎn)C,發(fā)現(xiàn)A在他的東偏北15°方向,求此時(shí)巡邏艦與釣魚(yú)島的距離(
≈1.414,結(jié)果精確到0.01)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)
的圖象交于點(diǎn)A(1,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)在y軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,是甲、乙兩個(gè)圓柱形水槽的軸截面示意圖,乙槽中有一四柱形鐵塊立放其中(圓柱形鐵塊的下底面完全落在乙槽底面上).現(xiàn)將甲槽的水勻速注入乙槽,甲、乙兩個(gè)水槽中水的深度y(厘米)與注水時(shí)間x(分鐘)之間的關(guān)系如圖2所示,根據(jù)圖象提供的信息,解答下列問(wèn)題:
![]()
(1)圖2中折線ABC表示 槽中水的深度與注水時(shí)間關(guān)系,線段DE表示 槽中水的深度與注水時(shí)間之間的關(guān)系(以上兩空選填“甲”或“乙”),點(diǎn)B的縱坐標(biāo)表示的實(shí)際意義是 .
(2)注水多長(zhǎng)時(shí)間時(shí),甲、乙.兩個(gè)水槽中水的深度相同?
(3)若乙槽底面積為36平方厘米(壁厚不計(jì)),則乙槽中鐵塊的體積為 立方厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】任何一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=s×t(s,t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解,并規(guī)定:
、例如18可以分解成1×18,2×9,3×6這三種,這時(shí)就有
.給出下列關(guān)于F(n)的說(shuō)法:(1)
;(2)
;(3)F(27)=3;(4)若n是一個(gè)整數(shù)的平方,則F(n)=1.其中正確說(shuō)法的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知四邊形ABCD是正方形,對(duì)角線AC、BD相交于點(diǎn)E,以點(diǎn)E為頂點(diǎn)作正方形EFGH.
(1)如圖1,點(diǎn)A、D分別在EH和EF上,連接BH、AF,直接寫(xiě)出BH和AF的數(shù)量關(guān)系;
(2)將正方形EFGH繞點(diǎn)E順時(shí)針?lè)较蛐D(zhuǎn).
①如圖2,判斷BH和AF的數(shù)量關(guān)系,并說(shuō)明理由;
②如果四邊形ABDH是平行四邊形,請(qǐng)?jiān)趥溆脠D中補(bǔ)全圖形;如果四方形ABCD的邊長(zhǎng)為
,求正方形EFGH的邊長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓O的直徑,C為AO的中點(diǎn),CD⊥AB交半圓于點(diǎn)D,以C為圓心,CD為半徑畫(huà)弧交AB于E點(diǎn),若AB=4,則圖中陰影部分的面積是( 。
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com