【題目】在菱形ABCD中,∠B=60,E是邊CD上一點(diǎn),以CE為邊作等邊△CEF.
![]()
(1) 如圖1,當(dāng)CE⊥AD ,CF=
時(shí),求菱形ABCD的面積;
(2) 如圖2,過點(diǎn)E作∠CEF的平分線交CF于H,連接DH,并延長(zhǎng)DH與AC的延長(zhǎng)交于點(diǎn)P,若∠ECD=15,求證:
.
【答案】(1)
;(2)見解析.
【解析】
(1)由等邊三角形的性質(zhì)得出CE的長(zhǎng).再由菱形的性質(zhì)及∠B=60得到CD的長(zhǎng),根據(jù)菱形的面積公式即可得出結(jié)論.
(2)連接DF,過F作FG⊥CD于G.由菱形的性質(zhì)及∠B=60得到△ABC和△ACD是等邊三角形,即可證明△ACE≌△DCF,進(jìn)而得到DF//AP,由平行線的性質(zhì)得到∠FDH=∠CPH.
由等邊三角形的性質(zhì)得到CH=HF.可證明△CHP≌△FHD,得到DF=CP.在Rt△DGF中,由∠FDC=60,可得
.在等腰Rt△CFG中,有
,從而可以得出結(jié)論.
(1)∵等邊△CEF,CF=
,∴CE=CF=
.
∵菱形ABCD,∠B=60,∴∠D=∠B=60,AD=CD.
∵CE⊥AD,∴∠ECD=30,∴CD=4,∴AD=4,∴S菱形ABCD=ADCE=
.
![]()
(2)連接DF,過F作FG⊥CD于G.
![]()
∵菱形ABCD,∴AB=BC=CD=AD.
∵∠B=60,∴△ABC和△ACD是等邊三角形,∴∠CAD=∠ACD=60.
∵等邊△CEF,∴CE=CF,∠ECF=60,∴∠ACD-∠ECD=∠ECF-∠ECD即∠ACE=∠DCF.
在△ACE與△DCF中,
,∴△ACE≌△DCF,∴∠FDC=60.
∵∠ACD=60,∴DF//AP,∴∠FDH=∠CPH.
∵等邊△CEF,EH平分∠CEF,∴CH=HF.
在△CHP與△FHD中,∵∠FDH=∠CPH,∠FHD=∠CHP,HF=CH,∴△CHP≌△FHD,∴DF=CP.
∵∠FDC=60,FG⊥CD,∴
.
∵∠ECF=60,∠ECD=15,∴∠DCF=45.
∵∠DCF=45,FG⊥CD,∴
,∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=2,BC=4.點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn).點(diǎn)D與點(diǎn)B、C不重合,過點(diǎn)D作DE⊥BC交AB于點(diǎn)E,將△ABC沿著直線DE翻折,使點(diǎn)B落在直線BC上的F點(diǎn).
![]()
(1)設(shè)∠BAC=α(如圖①),求∠AEF的大;(用含α的代數(shù)式表示)
(2)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)(如圖②),求線段DE的長(zhǎng)度;
(3)設(shè)BD=x,△EDF與△ABC重疊部分的面積為S,試求出S與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解油價(jià)上漲給出租車行業(yè)帶來的成本壓力,某市擬調(diào)整出租車運(yùn)價(jià),調(diào)整方案見下列表格及圖象(其中
為常數(shù))
行駛路程 | 收費(fèi)標(biāo)準(zhǔn) | |
調(diào)價(jià)前 | 調(diào)價(jià)后 | |
不超過 | 起步價(jià)7元 | 起步價(jià) |
超過 | 每公里2元 | 每公里 |
超出 | 每公里 | |
設(shè)行駛路程為
,調(diào)價(jià)前的運(yùn)價(jià)
(元),調(diào)價(jià)后運(yùn)價(jià)
(元),如圖,折線
表示
與
之間的函數(shù)關(guān)系式,線段
表示當(dāng)
時(shí),
與
的函數(shù)關(guān)系式,根據(jù)圖表信息,完成下列各題:
![]()
①填空:
,
,
;
②當(dāng)
時(shí),求
與
的關(guān)系,補(bǔ)充圖中該函數(shù)的圖像;
③函數(shù)
與
的圖象是否存在交點(diǎn)?若存在,求出交點(diǎn)的坐標(biāo),并說明該點(diǎn)的實(shí)際意義;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小華先后從甲地出發(fā)到乙地,小明先乘坐客車出發(fā)1小時(shí),小華才開車前住乙地,小華到達(dá)乙地后立即按原速從乙地返回甲地。已知小明、小華離甲地距離y(千米)與小明出發(fā)時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖象解答下列問題:小華從乙地返回后再經(jīng)過___小時(shí)與小明相遇.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D. 點(diǎn)E在BC上,EF⊥AB,垂足為F,∠1=∠2.
(1)試說明DG∥BC的理由;
(2)如果∠B=54°,且∠ACD=35°,求的∠3度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜加工公司先后兩批次收購蒜薹(tái)共100噸.第一批蒜薹價(jià)格為4000元/噸;因蒜薹大量上市,第二批價(jià)格跌至1000元/噸.這兩批蒜薹共用去16萬元.
(1)求兩批次購進(jìn)蒜薹各多少噸;
(2)公司收購后對(duì)蒜薹進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤(rùn)400元,精加工每噸利潤(rùn)1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為多少噸?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小強(qiáng)洗漱時(shí)的側(cè)面示意圖,洗漱臺(tái)(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強(qiáng)身高166cm,下半身FG=100cm,洗漱時(shí)下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺(tái)距離GC=15cm(點(diǎn)D,C,G,K在同一直線上).
(1)此時(shí)小強(qiáng)頭部E點(diǎn)與地面DK相距多少?
(2)小強(qiáng)希望他的頭部E恰好在洗漱盆AB的中點(diǎn)O的正上方,他應(yīng)向前或后退多少?
(sin80°≈0.98,cos80°≈0.17,
≈1.41,結(jié)果精確到0.1cm)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對(duì)知識(shí)進(jìn)行歸納和整理是提高學(xué)習(xí)效率的重要方法,善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,對(duì)照?qǐng)D形,把相關(guān)知識(shí)歸納整理如下:
一次函數(shù)與方程(組)的關(guān)系:
(1)一次函數(shù)的解析式就是一個(gè)二元一次方程;
(2)點(diǎn)B的橫坐標(biāo)是方程kx+b=0的解;
(3)點(diǎn)C的坐標(biāo)(x,y)中x,y的值是方程組①的解.
一次函數(shù)與不等式的關(guān)系:
(1)函數(shù)y=kx+b的函數(shù)值y大于0時(shí),自變量x的取值范圍就是不等式kx+b>0的解集;
(2)函數(shù)y=kx+b的函數(shù)值y小于0時(shí),自變量x的取值范圍就是不等式②的解集.
(一)請(qǐng)你根據(jù)以上歸納整理的內(nèi)容在下面的數(shù)字序號(hào)后寫出相應(yīng)的結(jié)論:① ;② ;
(二)如果點(diǎn)B坐標(biāo)為(2,0),C坐標(biāo)為(1,3);
①直接寫出kx+b≥k1x+b1的解集;
②求直線BC的函數(shù)解析式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=
x與反比例函數(shù)y=
的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為
.在坐標(biāo)軸上找一點(diǎn)C,直線AB上找一點(diǎn)D,在雙曲線y=
找一點(diǎn)E,若以O,C,D,E為頂點(diǎn)的四邊形是有一組對(duì)角為60的菱形,那么符合條件點(diǎn)D的坐標(biāo)為___.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com