【題目】下列說(shuō)法正確的是 ( )
A.要調(diào)查現(xiàn)在人們?cè)跀?shù)學(xué)化時(shí)代的生活方式,宜采用普查方式
B.一組數(shù)據(jù)3,4,4,6,8,5的中位數(shù)是4
C.必然事件的概率是100%,隨機(jī)事件的概率大于0而小于1
D.若甲組數(shù)據(jù)的方差
=0.128,乙組數(shù)據(jù)的方差
=0.036,則甲組數(shù)據(jù)更穩(wěn)定
【答案】C
【解析】
直接利用概率的意義以及全面調(diào)查和抽樣調(diào)查的意義、中位數(shù)、方差的意義分別分析得出答案.
A、要調(diào)查現(xiàn)在人們?cè)跀?shù)學(xué)化時(shí)代的生活方式,宜采用抽查的方式,故原說(shuō)法錯(cuò)誤;
B、一組數(shù)據(jù)3,4,4,6,8,5的中位數(shù)是4.5,故此選項(xiàng)錯(cuò)誤;
C、必然事件的概率是100%,隨機(jī)事件的概率大于0而小于1,正確;
D、若甲組數(shù)據(jù)的方差s甲2=0.128,乙組數(shù)據(jù)的方差s乙2=0.036,則乙組數(shù)據(jù)更穩(wěn)定,故原說(shuō)法錯(cuò)誤;
故選:C.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究:
如圖1,拋物線
與
軸交于
兩點(diǎn)(點(diǎn)
在點(diǎn)
的左側(cè)),頂點(diǎn)為
,
為對(duì)稱軸右側(cè)拋物線的一個(gè)動(dòng)點(diǎn),直線
與
軸于點(diǎn)
,過(guò)點(diǎn)
作
,交
軸于點(diǎn)
.
![]()
(1)求直線
的函數(shù)表達(dá)式及點(diǎn)
的坐標(biāo);
(2)如圖2,當(dāng)
軸時(shí),將
以每秒1個(gè)單位長(zhǎng)度的速度沿
軸的正方向平移,當(dāng)點(diǎn)
與點(diǎn)
重合時(shí)停止平移.設(shè)平移
秒時(shí),在平移過(guò)程中
與四邊形
重疊部分的面積為
,求
關(guān)于
的函數(shù)關(guān)系式,并寫出自變量
的取值范圍;
(3)如圖3,過(guò)點(diǎn)
作
軸的平行線,交直線
于點(diǎn)
,直線
與
交于點(diǎn)
,設(shè)點(diǎn)
的橫坐標(biāo)為
.
①當(dāng)
時(shí),求
的值;
②試探究點(diǎn)
在運(yùn)動(dòng)過(guò)程中,是否存在值
,使四邊形
是菱形?若存在,請(qǐng)直接寫出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《孫子算經(jīng)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,約成書于四、五世紀(jì).現(xiàn)在傳本的《孫子算經(jīng)》共三卷.卷上敘述算籌記數(shù)的縱橫相間制度和籌算乘除法則;卷中舉例說(shuō)明籌算分?jǐn)?shù)算法和籌算開(kāi)平方法;卷下記錄算題,不但提供了答案,而且還給出了解法.其中記載:“今有木,不知長(zhǎng)短.引繩度之,余繩四尺五,屈繩量之,不足一尺.問(wèn)木長(zhǎng)幾何?”
譯文:“用一根繩子去量一根長(zhǎng)木,繩子還剩余4.5尺,將繩子對(duì)折再量長(zhǎng)木,長(zhǎng)木還剩余1尺,問(wèn)長(zhǎng)木長(zhǎng)多少尺?”
請(qǐng)解答上述問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=4cm,C為AB上一動(dòng)點(diǎn),過(guò)點(diǎn)C的直線交⊙O于D、E兩點(diǎn),且∠ACD=60°,DF⊥AB于點(diǎn)F,EG⊥AB于點(diǎn)G,當(dāng)點(diǎn)C在AB上運(yùn)動(dòng)時(shí),設(shè)AF=xcm,DE=ycm(當(dāng)x的值為0或3時(shí),y的值為2),探究函數(shù)y隨自變量x的變化而變化的規(guī)律.
(1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組對(duì)應(yīng)值,如下表:
x/cm | 0 | 0.40 | 0.55 | 1.00 | 1.80 | 2.29 | 2.61 | 3 |
y/cm | 2 | 3.68 | 3.84 | 3.65 | 3.13 | 2.70 | 2 |
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:點(diǎn)F與點(diǎn)O重合時(shí),DE長(zhǎng)度約為 cm(結(jié)果保留一位小數(shù)).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
、
為河對(duì)岸的兩幢建筑物,某學(xué)習(xí)小組為了測(cè)出河寬(沿岸是平行的),先在岸邊的點(diǎn)
處測(cè)得
,再沿著河岸前進(jìn)10米后到達(dá)
點(diǎn),在點(diǎn)
處測(cè)得
,
.
(1)求河寬;
(2)該小組發(fā)現(xiàn)此時(shí)還可求得
、
之間的距離,請(qǐng)求出
的長(zhǎng).(精確到0.1米)(參考數(shù)據(jù):
,
,
,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,直線y=-2x+4交x軸、y軸于A,B兩點(diǎn),交雙曲線y=
(x<0)于C點(diǎn),△OAC的面積為6.
(1)求雙曲線的解析式;
(2)如圖②,D為雙曲線y=
(x<0)上一點(diǎn),連接CD,將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得線段DE,點(diǎn)E恰好落在x軸上,求點(diǎn)E的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:△ABC是等邊三角形,AB=12,E是AC中點(diǎn),D是直線BC上一動(dòng)點(diǎn),線段ED繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°,得線段EF,當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),則線段AF的最小值為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于
的方程
.
(1)求證:不論
為任何實(shí)數(shù),此方程總有實(shí)數(shù)根;
(2)若拋物線
與
軸交于兩個(gè)不同的整數(shù)點(diǎn),且
為正整數(shù),試確定此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的部分商業(yè)連鎖店進(jìn)行評(píng)估,將抽取的各商業(yè)連鎖店按照評(píng)估成績(jī)分成了
、
、
、
四個(gè)等級(jí),并繪制了如下不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問(wèn)題:
![]()
(1)本次評(píng)估隨機(jī)抽取了多少家商業(yè)連鎖店?
(2)請(qǐng)補(bǔ)充完整扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);
(3)從
、
兩個(gè)等級(jí)的商業(yè)連鎖店中任選2家介紹營(yíng)銷經(jīng)驗(yàn),求其中至少有一家是
等級(jí)的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com